Skip to main content
Log in

Tunable mixed amorphous–crystalline cellulose substrates (MACS) for dynamic degradation studies by atomic force microscopy in liquid environments

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Atomic force microscopy in liquid environments (L-AFM) became a state of the art technique in the field of enzymatic cellulose degradation due to its capability of in situ investigations on enzymatic relevant scales. Current investigations are however limited to few substrates like valonia cellulose, cotton linters and processed amorphous cellulose as only these show required flatness and purity. Structurally monophasic, these substrates confine conclusions regarding enzymatic degradation of mixed amorphous–crystalline substrates as commonly found in nature. To exploit the full potential of the technique, cellulose substrates with multiphase properties, flat topology and purity are therefore absolutely required. In this study we introduce a special preparation route based on highly crystalline Avicel PH101® cellulose and the ionic liquid 1-butyl-3-methylimmidazolium chloride as dissolution reagent. As comprehensively shown by atomic force microscopy, wide angle X-ray scattering, Raman spectroscopy and electron microscopy, the developed material allows precise control of its polymorphic composition by means of cellulose types I and II embedded in an amorphous matrix. Together with the tunable composition and flat topology over large areas (>10 × 10 µm2) the material is highly suited for L-AFM studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MACS:

Mixed amorphous−crystalline cellulose substrate

C1β :

Cellulose Iβ

C2:

Cellulose II

Avicel:

Avicel PH101®

BmimCl:

1-Butyl-3-methylimmidazolium chloride

UM:

Ultramicrotomy

L-AFM:

Atomic force microscopy in liquid environments

WAXS:

Wide angle X-ray scattering

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

RS:

Raman spectroscopy

RMS:

Root mean square roughness

FWHM:

Full width at half maximum

References

  • Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi:10.1007/s10570-010-9420-z

    Article  CAS  Google Scholar 

  • Ahola S, Turon X, Osterberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599. doi:10.1021/la801550j

    Article  CAS  Google Scholar 

  • Bubner P, Dohr J, Plank H et al (2012) Cellulases dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J Biol Chem 287:2759–2765. doi:10.1074/jbc.M111.257717

    Article  CAS  Google Scholar 

  • Bubner P, Plank H, Nidetzky B (2013) Visualizing cellulase activity. Biotechnol Bioeng 110:1529–1549. doi:10.1002/bit.24884

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417

    Article  Google Scholar 

  • Eibinger M, Bubner P, Ganner T et al (2014) Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. FEBS J 281:275–290. doi:10.1111/febs.12594

    Article  CAS  Google Scholar 

  • Fengel D, Jakob H, Strobel C (1995) Influence of the Alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511. doi:10.1515/hfsg.1995.49.6.505

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Ganner T, Bubner P, Eibinger M et al (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287:43215–43222. doi:10.1074/jbc.M112.419952

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A et al (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282. doi:10.1126/science.1208386

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kocherbitov V, Ulvenlund S, Kober M et al (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112:3728–3734. doi:10.1021/jp711554c

    Article  CAS  Google Scholar 

  • Korayem MH, Ebrahimi N (2011) Nonlinear dynamics of tapping-mode atomic force microscopy in liquid. J Appl Phys 109:084301. doi:10.1063/1.3573390

    Article  Google Scholar 

  • Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel ? Biomacromolecules 9297:5695–5699

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  CAS  Google Scholar 

  • Mäki-Arvela P, Anugwom I, Virtanen P et al (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201. doi:10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  • Mittal A, Katahira R, Himmel M, Johnson D (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    CAS  Google Scholar 

  • Park S, Baker J, Himmel M et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. doi:10.1038/nature07190

    Article  CAS  Google Scholar 

  • Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8:49–57. doi:10.1023/A:1016616920539

    Article  CAS  Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose i crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231. doi:10.1007/s10570-004-3885-6

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271. doi:10.1126/science.1177970

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424. doi:10.1039/B818061J

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93:443–456. doi:10.1002/bit.20730

    Article  CAS  Google Scholar 

  • Wiley H, Atalla RH (1987) Band Assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M et al (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi:10.1021/ma0505676

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Stefan Mitsche for helping us with WAXS analysis; Stephanie Rosker for helping us with the experiments; Angelina Orthacker, Robert Winkler and Ferdinand Hofer for discussions. Gratitude goes to the Cambridge Crystallographic Data Centre (CCDC) for the ability to use Mercury 3.3 for simulation purposes. Financial support was provided from the Austrian Science Fund FWF (Grant P 24156-B21 to B.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Nidetzky or Harald Plank.

Additional information

Thomas Ganner and Timothy Aschl have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganner, T., Aschl, T., Eibinger, M. et al. Tunable mixed amorphous–crystalline cellulose substrates (MACS) for dynamic degradation studies by atomic force microscopy in liquid environments. Cellulose 21, 3927–3939 (2014). https://doi.org/10.1007/s10570-014-0419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0419-8

Keywords

Navigation