Skip to main content
Log in

Facile formation of stimuli-responsive, fluorescent and magnetic nanoparticles based on cellulose stearoyl ester via nanoprecipitation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In comparison to stimuli-responsive, multi-functional nanoparticles (NPs) from synthetic polymers, such NPs based on sustainable, naturally occurring polysaccharides are still scarce. In the present study, stable stimuli-responsive, fluorescent and magnetic NPs were fabricated using cellulose stearoyl esters (CSEs) consisting of cellulose and stearoyl groups. The multifunctional NPs with the average diameters between 80 and 250 nm were obtained after facile nanoprecipitation using CSE solutions containing Fe3O4-NPs. Using the aqueous solution of fluorescent rhodamine B as precipitant, NPs with rhodamine B on NP surface were obtained. Rhodamine B could be released depending on the temperature. In comparison, stearoylaminoethyl rhodamine B can be encapsulated in CSE-NPs, which renders obtained NPs reversible fluorescence in response to UV illumination and heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali Z, Abbasi AZ, Zhang F, Arosio P, Lascialfari A, Casula MF, Wenk A, Kreyling W, Plapper R, Seidel M, Niessner R, Knoll J, Seubert A, Parak WJ (2011) Multifunctional nanoparticles for dual imaging. Anal Chem 83(8):2877–2882. doi:10.1021/ac103261y

    Article  CAS  Google Scholar 

  • Anwar N, Willms T, Grimme B, Kuehne AJC (2013) Light-switchable and monodisperse conjugated polymer particles. ACS Macro Lett 2(9):766–769. doi:10.1021/mz400362g

    Article  CAS  Google Scholar 

  • Belov VN, Bossi ML, Folling J, Boyarskiy VP, Hell SW (2009) Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chemistry 15(41):10762–10776. doi:10.1002/chem.200901333

    Article  CAS  Google Scholar 

  • Belov VN, Wurm CA, Boyarskiy VP, Jakobs S, Hell SW (2010) Rhodamines NN: a novel class of caged fluorescent dyes. Angew Chem Int Ed Engl 49(20):3520–3523. doi:10.1002/anie.201000150

    Article  CAS  Google Scholar 

  • Charreyre M-T, Zhang P, Winnik MA, Pichot C, Graillat C (1995) Adsorption of rhodamine 6G onto polystyrene latex particles with sulfate groups at the surface. J Colloid Interface Sci 170(2):374–382. doi:10.1006/jcis.1995.1115

    Article  CAS  Google Scholar 

  • Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657. doi:10.1016/j.biomaterials.2013.01.084

    Article  CAS  Google Scholar 

  • Chu M, Song X, Cheng D, Liu S, Zhu J (2006) Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation. Nanotechnology 17(13):3268–3273. doi:10.1088/0957-4484/17/13/032

    Article  CAS  Google Scholar 

  • Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35(11):1195–1208. doi:10.1039/b517790c

    Article  CAS  Google Scholar 

  • Di Corato R, Bigall NC, Ragusa A, Dorfs D, Genovese A, Marotta R, Manna L, Pellegrino T (2011) Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano 5(2):1109–1121. doi:10.1021/nn102761t

    Article  Google Scholar 

  • Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2Core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580. doi:10.1021/cm302828d

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • Gaponik N, Radtchenko IL, Sukhorukov GB, Rogach AL (2004) Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 20(4):1449–1452

    Article  CAS  Google Scholar 

  • He X, Wu X, Cai X, Lin S, Xie M, Zhu X, Yan D (2012) Functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers and their drug release properties. Langmuir 28(32):11929–11938. doi:10.1021/la302546m

    Article  CAS  Google Scholar 

  • Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure–property relations. Cellulose 10(3):283–296. doi:10.1023/a:1025117327970

    Article  CAS  Google Scholar 

  • Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9(5):1487–1492. doi:10.1021/bm8000155

    Article  CAS  Google Scholar 

  • Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421. doi:10.1002/mabi.201200409

    Article  CAS  Google Scholar 

  • Kim J-W, Deaton R (2013) Molecular self-assembly of multifunctional nanoparticle composites with arbitrary shapes and functions: challenges and strategies. Part Pract Syst Charact 30(2):117–132. doi:10.1002/ppsc.201200129

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Koktysh D, Bright V, Pham W (2011) Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging. Nanotechnology 22(27):275606. doi:10.1088/0957-4484/22/27/275606

    Article  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10

    CAS  Google Scholar 

  • Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7(6):767–783. doi:10.1002/mabi.200700022

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Lessard BH, Ling EJY, Marić M (2012) Fluorescent, thermoresponsive oligo(ethylene glycol) methacrylate/9-(4-Vinylbenzyl)-9H-carbazole copolymers designed with multiple LCSTs via nitroxide mediated controlled radical polymerization. Macromolecules 45(4):1879–1891. doi:10.1021/ma202648k

    Article  CAS  Google Scholar 

  • Liebert T, Hornig S, Hesse S, Heinze T (2005) Nanoparticles on the basis of highly functionalized dextrans. J Am Chem Soc 127(30):10484–10485. doi:10.1021/ja052594h

    Article  CAS  Google Scholar 

  • Liu G, Swierczewska M, Lee S, Chen X (2010) Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 5(6):524–539. doi:10.1016/j.nantod.2010.10.005

    Article  CAS  Google Scholar 

  • Liu J, He W, Zhang L, Zhang Z, Zhu J, Yuan L, Chen H, Cheng Z, Zhu X (2011) Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst. Langmuir 27(20):12684–12692. doi:10.1021/la202749v

    Article  CAS  Google Scholar 

  • Lou L, Yu K, Zhang Z, Li B, Zhu J, Wang Y, Huang R, Zhu Z (2011) Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling. Nanoscale 3(5):2315–2323. doi:10.1039/c1nr10066a

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338. doi:10.1021/cr2002596

    Article  CAS  Google Scholar 

  • Mandal SK, Lequeux N, Rotenberg B, Tramier M, Fattaccioli J, Bibette J, Dubertret B (2005) Encapsulation of magnetic and fluorescent nanoparticles in emulsion droplets. Langmuir 21(9):4175–4179. doi:10.1021/la047025m

    Article  CAS  Google Scholar 

  • Mihai M, Socoliuc V, Doroftei F, Ursu E-L, Aflori M, Vekas L, Simionescu BC (2013) Calcium carbonate–magnetite–chondroitin sulfate composite microparticles with enhanced pH stability and superparamagnetic properties. Cryst Growth Des 13(8):3535–3545. doi:10.1021/cg400511d

    Article  CAS  Google Scholar 

  • Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Multifunctional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as a basis for nanotherapeutics. Adv Funct Mater 20(11):1842–1851. doi:10.1002/adfm.201000321

    Article  CAS  Google Scholar 

  • Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson DH, Akiyoshi K (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1):56–63. doi:10.1021/bm301286h

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913. doi:10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  • Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109(9):3879–3885. doi:10.1021/jp045402y

    Article  CAS  Google Scholar 

  • Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RT (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7(1):500–512. doi:10.1021/nn3046055

    Article  CAS  Google Scholar 

  • Schäfer CG, Gallei M, Zahn JT, Engelhardt J, Hellmann GP, Rehahn M (2013) Reversible Light-, Thermo-, and Mechano-Responsive Elastomeric Polymer Opal Films. Chem Mater 25(11):2309–2318. doi:10.1021/cm400911j

    Article  Google Scholar 

  • Schubert S, Delaney JJT, Schubert US (2011) Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7(5):1581. doi:10.1039/c0sm00862a

    Article  CAS  Google Scholar 

  • Shi D, Cho HS, Chen Y, Xu H, Gu H, Lian J, Wang W, Liu G, Huth C, Wang L, Ewing RC, Budko S, Pauletti GM, Dong Z (2009) Fluorescent polystyrene-Fe3O4Composite nanospheres for in vivo Imaging and hyperthermia. Adv Mater 21(21):2170–2173. doi:10.1002/adma.200803159

    Article  CAS  Google Scholar 

  • Shiraishi Y, Miyamoto R, Zhang X, Hirai T (2007) Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range. Org Lett 9(20):3921–3924. doi:10.1021/ol701542m

    Article  CAS  Google Scholar 

  • Tezuka Y, Tshuchiya Y (1995) Determination of substituent distribution in cellulose acetate by means of a 13C NMR study on its propanoated derivative. Carbohydr Res 273:83–91

    Article  CAS  Google Scholar 

  • Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231. doi:10.1023/a:1013133921626

    Article  CAS  Google Scholar 

  • Vaca-Garcia C, Gozzelino G, Glasser WG, Borredon ME (2003) Dynamic mechanical thermal analysis transitions of partially and fully substituted chellulose fatty esters. J Polym Sci Part B: Polym Phys 41:281–289

    Article  CAS  Google Scholar 

  • van den Broek LA, Boeriu CG (2013) Enzymatic synthesis of oligo- and polysaccharide fatty acid esters. Carbohydr Polym 93(1):65–72. doi:10.1016/j.carbpol.2012.05.051

    Article  Google Scholar 

  • Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008. doi:10.1021/nl0502569

    Article  CAS  Google Scholar 

  • Vollrath A, Schubert S, Schubert US (2013) Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles—a review. J Mater Chem B 1(15):1994. doi:10.1039/c3tb20089b

    Article  CAS  Google Scholar 

  • Wang X, Jiang G, Li X, Tang B, Wei Z, Mai C (2013) Synthesis of multi-responsive polymeric nanocarriers for controlled release of bioactive agents. Polym Chem 4(17):4574. doi:10.1039/c3py00746d

    Article  CAS  Google Scholar 

  • Wotschadlo J, Liebert T, Clement JH, Anspach N, Hoppener S, Rudolph T, Muller R, Schacher FH, Schubert US, Heinze T (2013) Biocompatible multishell architecture for iron oxide nanoparticles. Macromol Biosci 13(1):93–105. doi:10.1002/mabi.201200243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Hessian excellence initiative LOEWE—cluster SOFT CONTROL for the financial support. KZ thanks Prof. M. Biesalski for the kind support. We thank Prof. Jörg Schneider for the support by DLS measurements. M. Trautmann and Dr. M. Wittemann are gratefully acknowledged for SEC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geissler, A., Scheid, D., Li, W. et al. Facile formation of stimuli-responsive, fluorescent and magnetic nanoparticles based on cellulose stearoyl ester via nanoprecipitation. Cellulose 21, 4181–4194 (2014). https://doi.org/10.1007/s10570-014-0412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0412-2

Keywords

Navigation