Skip to main content

Advertisement

Log in

Preparation of tough cellulose II nanofibers with high thermal stability from wood

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907–1912

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi/Sisal fiber composites. Compos Part A 37:1672–1680

    Article  Google Scholar 

  • Arvela PM, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crop Prod 32:175–201

    Article  Google Scholar 

  • Blackwell J, Kolpak FJ, Gardner KH (1977) Structures of native and regenerated celluloses. ACS Symp Ser 48:42–55

    Article  CAS  Google Scholar 

  • Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Hai YF, Zhang MX, Chen P (2011a) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87:1634–1640

    Article  CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606

    Article  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Holzforschung 49:505–511

    Article  CAS  Google Scholar 

  • Fink HP, Phillip B (1985) Models of cellulose physical structure from the view point of the cellulose I → II transition. J Appl Polym Sci 30:3779–3790

    Article  CAS  Google Scholar 

  • Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos Part A 37:2213–2220

    Article  Google Scholar 

  • Gomes A, Goda K, Ohgi J (2004) Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites. JSME Int J, Ser A 47:541–546

    Article  CAS  Google Scholar 

  • Han JQ, Zhou CJ, French AD, Han GP, Wu QL (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2012) Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation. Cellulose 19:435–442

    Article  CAS  Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibers in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38(2):463–468

    Article  CAS  Google Scholar 

  • Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47–55

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  CAS  Google Scholar 

  • Jin ZW, Wang S, Wang JQ, Zhao MX (2012) Effects of plasticization conditions on the structures and properties of cellulose packaging films from ionic liquid [BMIM]Cl. J Appl Polym Sci 125(1):704–709

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    Article  CAS  Google Scholar 

  • Kim HJ, Eom YG (2001) Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites. J Korean Wood Sci Technol 29:59–67

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46

    Article  CAS  Google Scholar 

  • Murase H, Sugiyama J, Saiki H, Harada H (1988) The effect of lignin on mercerization of cellulose in wood: an electron diffraction study on the transformation from cellulose I to cellulose II. Mokuzai Gakkaishi 34(12):965–972

    CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323–331

    Article  CAS  Google Scholar 

  • Nakano T (1989) Plasticization of wood by alkali treatment: relationship between plasticization and ultrastructure. Mokuzai Gakkaishi 35(5):431–437

    CAS  Google Scholar 

  • Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 20:1–4

    Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282

    Article  CAS  Google Scholar 

  • Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose IIla. Macromolecules 7:486–494

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  • Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4(2):219–238

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (NSFC 31170514, 31370557), Specialized Research Fund for the Doctoral Program of Higher Education of China (20113204110011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dagang Li or Kentaro Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Li, D., Yano, H. et al. Preparation of tough cellulose II nanofibers with high thermal stability from wood. Cellulose 21, 1505–1515 (2014). https://doi.org/10.1007/s10570-014-0222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0222-6

Keywords

Navigation