Skip to main content
Log in

Synthesis, structure and solution properties of the novel polyampholytes based on cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel cellulose-based polyampholyte derivative, carboxylethyl quaternized cellulose (CEQC), was homogeneously synthesized by introducing positively charged quaternary ammonium groups and negatively charged carboxyl groups to the backbone of cellulose. The structure and dilute solution properties of CEQCs were characterized with elemental analysis, FTIR, NMR, viscometer, light scattering and zeta-potential measurement. The nitrogen content and total degree of substituent of acylamino and carboxyl groups increased with an increase of the molar ratio of acrylamide to the anhydroglucose unit of quaternized cellulose (QC). The salt-resistance of CEQC was improved remarkably by introducing opposite charged carboxyl to the QC chains. The intrinsic viscosity of the prepared polyampholytes was found to be very sensitive to the pH of the solutions. CEQC-1, the sample with relative low content of carboxyl groups, behaved as a classical cationic polyelectrolyte. However, CEQC-2 and CEQC-3, the samples with higher content of carboxyl groups, displayed typical polyampholyte behavior, and the isoelectric points (IEP) were determined to be 5.0 and 3.8 respectively. This work provided a facile method for the synthesis of novel cellulose-based polyampholytes with different IEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfrey T, Morawetz H, Fitzgerald EB, Fuoss RM (1950) Synthetic electrical analog of proteins. J Am Chem Soc 72:1864

    Article  CAS  Google Scholar 

  • Annenkov VV, Danilovtseva EN, Saraev VV, Mikhaleva AI (2003) Complexation of copper(II) ions with imidazole-carboxylic polymeric systems. J Polym Sci Part A Polym Chem 41:2256–2263

    Article  CAS  Google Scholar 

  • Bekturov EA, Kudaibergenov SE, Rafikov SR (1990) Synthetic polymeric ampholytes in solution. J Macromol Sci Polym Rev 30:233–303

    Article  Google Scholar 

  • Brown W, Wiskstön R (1965) A viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation. Eur Polym J 1:1–10

    Article  CAS  Google Scholar 

  • Candau F, Joanny JF (1996) Polymeric materials encyclopedia. CRC, Boca Raton, FL, pp 5476–5488

    Google Scholar 

  • Chen WI, Alexandridis P, Su CK, Patrickios CS, Hertler WR, Hatton TA (1995) Controlled living radical polymerization halogen atom transfer radical polymerization promoted by a Cu(I)Cu(II) redox process. Macromolecules 28:8604–8611

    Article  CAS  Google Scholar 

  • Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732

    Article  CAS  Google Scholar 

  • Chen Y, Liu Y, Tang H, Tan H (2010) Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer I: optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyldiallylammonium chloride) superabsorbent polymer. Carbohydr Polym 81:365–371

    Article  CAS  Google Scholar 

  • Edwards SF, King PR, Pincus P (1980) Phase changes in polyampholytes. Ferroelectrics 30:3–6

    Article  CAS  Google Scholar 

  • Ezell RG, McCormick CL (2007) Electrolyte- and pH-responsive polyampholytes with potential as viscosity-control agents in enhanced petroleum recovery. J Appl Polym Sci 104:2812–2821

    Article  CAS  Google Scholar 

  • Haack V, Heinze T, Oelmeyer G, Kulicke WM (2002) Starch derivatives of high degree of functionalization, 8. Synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromol Mater Eng 287:495–502

    Article  CAS  Google Scholar 

  • Halverson F, Lancaster JE, O’Conner MN (1985) Sequence distribution of carboxyl groups in hydrolyzed polyacrylamide. Macromolecules 18:1139–1144

    Article  CAS  Google Scholar 

  • Hampton KW Jr, Ford WT (2000) Styrylmethyl(trimethyl)ammonium methacrylate polyampholyte latexes. Macromolecules 33:7292–7299

    Article  CAS  Google Scholar 

  • Heinze T, Genco T (2012) Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers. Cellulose 19:1305–1313

    Article  CAS  Google Scholar 

  • Huang JT, Zhang J, Zhang JQ, Zheng SH (2005) Template imprinting amphoteric polymer for the recognition of proteins. J Appl Polym Sci 95:358–361

    Article  CAS  Google Scholar 

  • Ji E, Whitten DG, Schanze KS (2011) pH-dependent optical properties of a poly(phenylene ethynylen) conjugated polyampholyte. Langmuir 27:1565–1568

    Article  CAS  Google Scholar 

  • Kamachi M, Kurihara M, Stille JK (1972) Synthesis of block polymers for desalination membranes. Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acrylic acid. Macromolecules 5:161–167

    Article  CAS  Google Scholar 

  • Khokhlov AR, Nyrkova IA (1992) Compatibility enhancement and microdomain structuring in weakly charged polyelectrolyte mixtures. Macromolecules 25:1493–1502

    Article  CAS  Google Scholar 

  • Klemm D, Heubletin B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Korchagina EV, Philippova OE (2010) Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules. Biomacromolecules 11:3457–3466

    Article  CAS  Google Scholar 

  • Kudaibergenov SE, Ciferri A (2007) Natural and synthetic polyampholytes, 2. Functions and applications. Macromol Rapid Commun 28:1969–1986

    Article  CAS  Google Scholar 

  • Li S, Wu Y, Wang J, Zhang Q, Kou Y, Zhang S (2010) Double-responsive polyampholyte as a nanoparticle stabilizer: application to reversible dispersion of gold nanoparticles. J Mater Chem 20:4379–4384

    Article  CAS  Google Scholar 

  • Loubaki E, Ourevitch M, Sicsic S (1991) Chemical modification of chitosan by glycidyl trimethylammonium chloride. Characterization of modified chitosan by 13C- and 1H-NMR spectroscopy. Eur Polym J 27:311–317

    Article  CAS  Google Scholar 

  • Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189

    Article  CAS  Google Scholar 

  • Mahltig B, Cheval N, Gohy J, Fahmi A (2010) Preparation of gold nanoparticles under presence of the diblock polyampholyte PMAA-b-PDMAEMA. J Polym Res 17:579–588

    Article  CAS  Google Scholar 

  • Mao M, Turner SR (2007) Aggregation of rod-coil block copolymers containing rigid polyampholyte blocks in aqueous solution. J Am Chem Soc 129:3832–3833

    Article  CAS  Google Scholar 

  • Mayadunne RTA, Rizzardo E, Chiefari J, Krstina J, Moad G, Postma A, Thang SH (2000) Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules 33:243–245

    Article  CAS  Google Scholar 

  • McCormick CL, Kathmann EE (1996) Polymeric materials encyclopedia. CRC, Boca Raton, FL, pp 5462–5476

    Google Scholar 

  • McCormick CL, Salazar LC (1992) Water-soluble copolymers. 43. Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methylpropyl]trimethylammonium chloride. Macromolecules 25:1896–1900

    Article  CAS  Google Scholar 

  • Nisato G, Munch JP, Candau SJ (1999) Swelling, structure, and elasticity of polyampholyte hydrogels. Langmuir 15:4236–4244

    Article  CAS  Google Scholar 

  • Noh JG, Sung YJ, Geckeler KE, Kudaibergenov SE (2005) Synthesis, characterization, and stimuli-sensitive properties of novel polycarbobetaines. Polymer 46:2183–2190

    Article  CAS  Google Scholar 

  • Osada Y, Gong JP (1998) Soft and wet materials polymer gels. Adv Mater 10:827–837

    Article  CAS  Google Scholar 

  • Pafiti KS, Philippou Z, Loizou E, Porcar L, Patrickios CS (2011) End-linked poly[2-(dimethylamino)ethyl methacrylate]–poly(methacrylic acid) polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization. Macromolecules 44:5352–5362

    Article  CAS  Google Scholar 

  • Patrickios CS, Yamasaki EN (1995) Polypeptide amino acid composition and isoelectric point II. Comparison between experiment and theory. Anal Chem 231:82–91

    CAS  Google Scholar 

  • Patrickios CS, Hertler WR, Abbott NL, Hatton TA (1994) Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. Macromolecules 27:930–937

    Article  CAS  Google Scholar 

  • Patrickios CS, Sharma LR, Armes SP, Billingham NC (1999) Precipitation of a water soluble ABC triblock methacrylic polyampholyte effects of time, pH, polymer concentration, salt type and concentration, and presence of a protein. Langmuir 15:1613–1620

    Article  CAS  Google Scholar 

  • Ribeiro JM, Sillero A (1991) A program to calculate the isoelectric point of macromolecules. Comput Biol Med 21:131–141

    Article  CAS  Google Scholar 

  • Sillero A, Ribeiro JM (1989) Isoelectric points of proteins: theoretical determination. Anal Biochem 179:319–325

    Article  CAS  Google Scholar 

  • Šimkovic I, Synytsya A, Uhliariková I, Copíková J (2009) Amidated pectin derivatives with n-propyl-, 3-aminopropyl-, 3-propanol- or 7-aminoheptyl- substituents. Carbohydr Polym 76:602–606

    Article  Google Scholar 

  • Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008a) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264

    Article  CAS  Google Scholar 

  • Song Y, Zhou J, Zhang L, Wu X (2008b) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25

    Article  CAS  Google Scholar 

  • Tan B, Ravi P, Tam KC (2006) Synthesis and characterization of novel pH-responsive polyampholyte microgels. Macromol Rapid Commun 27:522–528

    Article  CAS  Google Scholar 

  • Tanford Ch (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  • Tsitsilianis C, Stavrouli N, Bocharova V, Angelopoulos S, Kiriy A, Katsampas I, Stammc M (2008) Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture. Polymer 49:2996–3006

    Article  CAS  Google Scholar 

  • Vasconcelos CL, Bezerril PM, Santos DES, Dantas TNC, Pereira MR, Fonseca JLC (2006) Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules 7:1245–1252

    Article  Google Scholar 

  • Vasilevskaya VV, Potemkin II, Khokhlov AR (1999) Swelling and collapse of physical gels formed by associating telechelic polyelectrolytes. Langmuir 15:7918–7924

    Article  CAS  Google Scholar 

  • Wang JS, Matyjaszewski K (1995) Control1ed “living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615

    Article  CAS  Google Scholar 

  • Yang F, Li G, He Y, Ren F, Wang G (2009) Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 78:95–99

    Article  CAS  Google Scholar 

  • Yin Q, Li Y, Yin Q, Miao X, Jiang B (2009) Synthesis and rheological behavior of a novel N-sulfonate ampholyte chitosan. J Appl Polym Sci 113:3382–3387

    Article  CAS  Google Scholar 

  • Yu H, Huang Y, Ying H, Xiao C (2007) Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr Polym 69:29–40

    Article  CAS  Google Scholar 

  • Zhang Y, Li S, Zhang L (2010) Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution. J Phys Chem B 114:4945–4954

    Article  CAS  Google Scholar 

  • Zurimendi JA, Guerrero SJ, Leon V (1984) The determination of the degree of hydrolysis in poly(acrylamides): simple methods using C13 n.m.r., and elementary analysis. Polymer 25:1314–1316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (50973085), Program for New Century Excellent Talents in University (NCET-11-0415), National Basic Research Program of China (973 Program, 2010CB732203) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, J., Hu, H. & Zhou, J. Synthesis, structure and solution properties of the novel polyampholytes based on cellulose. Cellulose 20, 1175–1185 (2013). https://doi.org/10.1007/s10570-013-9891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9891-9

Keywords

Navigation