Skip to main content
Log in

Morphological evolution of curauá fibers under acid hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose whiskers were obtained by means of sulfuric acid hydrolysis of curauá fibers. Before hydrolysis, the natural fibers were treated with an alkaline solution to remove the non-cellulosic content. Fiber degradation evolution and cellulose whisker formation were analyzed by structural and morphological analysis. The original fiber structure underwent a fragmentation mechanism after being exposed for 3 min to sulfuric acid. Cellulose whiskers were lixiviated from the fiber surface after 10 min of hydrolysis, developing two scenarios: one where the whiskers became unattached from the original fiber, and the other which remained attached. The cellulose whiskers presented a needle-like geometry with an approximate diameter of 11 nm and average length of 185 nm, after 30 min of acid hydrolysis. Based on microscopic characterization, a schematic representation of the morphological evolution of the cellulose fibers submitted to acid hydrolysis is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Ayuk JE, Mathew AP, Oksman K (2009) The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. J Appl Polym Sci 114:2723–2730

    Article  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  CAS  Google Scholar 

  • Bellamy LJ (1966) The infrared spectra of complex molecules. Wiley, New York

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Brown RM Jr, Saxena IM, Kudlicka K (1996) Cellulose biosynthesis in higher plants. Trends Plant Sci 1:149–156

    Article  Google Scholar 

  • Candanedo SB, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054

    Article  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromol 10:712–716

    Article  CAS  Google Scholar 

  • Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Durán N, Lemes AP, Durán M, Freer J, Baeza J (2011) A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56:672–677

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Favier V, Cavaille JY, Chanzy H (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Inter J Biol Macromol 48:50–57

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hon DN-S, Shiraishi N (1990) Wood and cellulose chemistry, Chaps 2–5, 10. Marcel Dekker Inc, New York

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) High-resolution images of defects in liquid crystalline polymers in the smectic and crystalline phases. Macromolecules 22:168–173

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  Google Scholar 

  • Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macrom Rapid Commun 25:771–787

    Article  Google Scholar 

  • Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  • Pandey JK, Lee CS, Ahn S-H, Kim C-S, Chu W-S, Jang D-Y (2009) Evaluation of morphological architecture of cellulose chains in grass during conversion from macro to nano dimensions. e-Polymers 102:1–15

    Google Scholar 

  • Pandey JK, Lee CS, Ahn S-H (2010) Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci 115:2493–2501

    Article  CAS  Google Scholar 

  • Ranby BG (1952) The cellular micelles. TAPPI 35:53–58

    CAS  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Roman M, Winter T (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004

    Article  CAS  Google Scholar 

  • Speck T, Burget I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193

    Article  CAS  Google Scholar 

  • Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli M-A (2009) Characterization of lignocellulosic curaua fibres. Carbohyd Polym 77:47–53

    Article  Google Scholar 

  • Sturcova A, Davies JR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6:1055–1061

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilhot H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Wan N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd Polym 68:235–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Brazil) through Inomat, National Institute (INCT) for Complex Functional Materials. The authors would also like to thank Prof. Marco-Aurélio De Paoli for the curauá fiber donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Taipina, M., Ferrarezi, M.M.F. & Gonçalves, M.C. Morphological evolution of curauá fibers under acid hydrolysis. Cellulose 19, 1199–1207 (2012). https://doi.org/10.1007/s10570-012-9715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9715-3

Keywords

Navigation