Skip to main content
Log in

Biochemical localization of a protein involved in synthesis of Gluconacetobacter hansenii cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

IPTG:

Isopropyl thio-galactopyranoside

AcsD:

Acetobacter cellulose synthase operon protein D

References

  • Anwar H, Brown MR, Cozens RM, Lambert PA (1983) Isolation and characterization of the outer and cytoplasmic membranes of Pseudomonas cepacia. J Gen Microbiol 129(2):499–507

    CAS  Google Scholar 

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77(11):6678–6682

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown RM Jr, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569

    Article  CAS  Google Scholar 

  • Bureau TE, Brown RM (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci USA 84(20):6985–6989

    Article  CAS  Google Scholar 

  • de Maagd RA, Lugtenberg B (1986) Fractionation of Rhizobium leguminosarum cells into outer membrane, cytoplasmic membrane, periplasmic, and cytoplasmic components. J Bacteriol 167(3):1083–1085

    Google Scholar 

  • Eitan B (2007) The periplasm: co- and posttranslational protein targetting to the SecYEG translocon in Escherichia coli. ASM Press, Washington DC

    Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium ob3b- mechanistic and environmental implications. Biochemistry-Us 29(27):6419–6427

    Article  CAS  Google Scholar 

  • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) Psortb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5):617–623

    Article  CAS  Google Scholar 

  • Garen A, Levinthal C (1960) A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 38:470–483

    Article  CAS  Google Scholar 

  • Graham LL, Beveridge TJ, Nanninga N (1991a) Periplasmic space and the concept of the periplasm. Trends Biochem Sci 16(9):328–329

    Article  CAS  Google Scholar 

  • Graham LL, Harris R, Villiger W, Beveridge TJ (1991b) Freeze-substitution of gram-negative eubacteria: general cell morphology and envelope profiles. J Bacteriol 173(5):1623–1633

    CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94(1):64–69

    Article  CAS  Google Scholar 

  • Halford SE (1971) Escherichia coli alkaline phosphatase. An analysis of transient kinetics. Biochem J 125(1):319–327

    CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by acetobacter xylinum. Ii. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    CAS  Google Scholar 

  • Hu XM, Zhang J, Xiao J, Li Y (2008) Protein folding in hydrophobic-polar lattice model: a flexible ant-colony optimization approach. Protein Peptide Lett 15(5):469–477

    Article  CAS  Google Scholar 

  • Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to tpr or not to tpr? Trends Biochem Sci 20(7):257–259

    Article  CAS  Google Scholar 

  • Lin FC, Brown RM Jr, Drake RR Jr, Haley BE (1990) Identification of the uridine 5′-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem 265(9):4782–4784

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown shewanella putrefaciens mr-1. J Bacteriol 174(11):3429–3438

    CAS  Google Scholar 

  • Ohad I, Danon D (1964) On dimensions of cellulose microfibrils. J Cell Biol 22(1):302–305

    Article  CAS  Google Scholar 

  • Olsson RT, Kraemer R, Lopez-Rubio A, Torres-Giner S, Ocio MJ, Lagaron JM (2010) Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns. Macromolecules 43(9):4201–4209

    Article  CAS  Google Scholar 

  • Palmer T (2007) The periplasm: the Tat protein export pathway. ASM Press, Washingtom DC

    Google Scholar 

  • Ponting CC, Phillips C (1996) Rapsyn’s knobs and holes: eight tetratrico peptide repeats. Biochem J 314(Pt 3):1053–1054

    CAS  Google Scholar 

  • Robinson PA, Anderton BH, Loviny TLF (1988) Nitrocellulose-bound antigen repeatedly used for the affinity purification of specific polyclonal antibodies for screening DNA expression libraries. J Immunol Methods 108(1–2):115–122

    Article  CAS  Google Scholar 

  • Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153(4):205–212

    Article  Google Scholar 

  • Ruebush SS, Brantley SL, Tien M (2006) Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown under aerobic and anaerobic conditions. Appl Environ Microbiol 72(4):2925–2935

    Article  CAS  Google Scholar 

  • Saxena IM, Lin FC, Brown RM Jr (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol 15(5):673–683

    Article  CAS  Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752

    CAS  Google Scholar 

  • Sha Z, Stabel TJ, Mayfield JE (1994) Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol 176(23):7375–7377

    CAS  Google Scholar 

  • Streeter JG, Le Rudulier D (1990) Release of periplasmic enzymes from Rhizobium leguminosarum bv phaseoli bacteroids by lysozyme is enhanced by pretreatment of cells at low ph. Curr Microbiol 21(3):169–173

    Article  CAS  Google Scholar 

  • Thomas JD, Daniel RA, Errington J, Robinson C (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (tat) pathway in Escherichia coli. Mol Microbiol 39(1):47–53

    Article  CAS  Google Scholar 

  • Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW et al (1990) Genetic organization of the cellulose synthase operon in acetobacter xylinum. Proc Natl Acad Sci USA 87(20):8130–8134

    Article  CAS  Google Scholar 

  • Woodman ME (2008) Direct PCR of intact bacteria (colony PCR). Curr Protoc Microbiol Appendix 3:Appendix 3D

  • Yahr TL, Wickner WT (2001) Functional reconstitution of bacterial tat translocation in vitro. EMBO J 20(10):2472–2479

    Article  CAS  Google Scholar 

  • Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80(3):773–777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center award number DE-SC0001090. Support for Prashanti Iyer was provided by USDA National Needs Graduate Fellowship Competitive Grant No. 2007-38420-17782 from the National Institute of Food and Agriculture and the Penn State College of Agricultural Sciences Dean’s Scholars fund. We thank Molly Hanlon for preparation of Fig. 4. The mass spectrometric analysis of AcsD was performed by Hasan Koc of The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, P.R., Catchmark, J., Brown, N.R. et al. Biochemical localization of a protein involved in synthesis of Gluconacetobacter hansenii cellulose. Cellulose 18, 739–747 (2011). https://doi.org/10.1007/s10570-011-9504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9504-4

Keywords

Navigation