Skip to main content
Log in

Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bionanocomposites of hydroxypropyl cellulose (HPC) and nanofibrillated cellulose (NFC) were prepared by solution casting. The various NFC were in form of powders and were prepared from refined, bleached beech pulp (RBP) by mechanical disintegration, optionally combined with a pre- or post mechanical carboxymethylation. Dynamic mechanical analysis (DMA) and tensile tests were performed to compare the reinforcing effects of the NFC powders to those of their never-dried analogues. For unmodified NFC powders an inferior reinforcing potential in HPC was observed that was ascribed to severe hornification and reagglomeration of NFC. In contrast, the composites with carboxymethylated NFC showed similar behaviors, regardless of the NFC suspensions being dried or not prior to composite preparation. SEM characterization confirmed a homogeneous dispersion of dried, carboxymethylated NFC within the HPC matrix. These results clearly demonstrate that drying of carboxymethylated NFC to a powder does not decrease its reinforcing potential in (bio)nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemdar A, Osman K, Sain M (2009) The effect of decreased fiber size in wheat straw/polyvinyl alcohol composites. J Biobased Mat Bioenerg 3:75–80

    Article  CAS  Google Scholar 

  • Aspler JS, Gray DG (1982) Interaction of organic vapours with hydroxypropyl cellulose. Polymer 23:43–46

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Bahia HS (1995) Treatment of cellulose. Patent publication number WO9515342

  • Bordeanu N, Eyholzer Ch, Zimmermann T (2008) Cellulose nanostructures with tailored functionalities. Pending patent

  • Cantiani R, Guerin G, Senechal A, Vincent I, Benchimol J (2001) Patent publication numbers US6224663, US6231657, US6306207

  • Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2003) Derivatized microfibrillar polysaccharide. Patent publication number WO0047628

  • Charlet G, Gray DG (1987) Solid cholesteric films cast from aqueous (hydroxypropyl)cellulose. Macromolecules 20:33–38

    Article  CAS  Google Scholar 

  • Couderc S, Ducloux O, Kim BJ, Someya T (2009) A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet. J Micromech Microeng 19:055006

    Article  Google Scholar 

  • Dalmas F, Cavaillé JY, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behaviour and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Comp Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon M, Maureaux A, Vincent I (1996) Microfibrillated cellulose and method for preparing same from primary wall plant pulp, particularly sugar beet pulp. Patent publication number WO9624720

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Excoffier G, Vignon M, Benchimol J, Vincent I, Hannuksela T, Chauve V (1999) Parenchyma cellulose substituted with carboxyalkyl groups and preparation method. Patent publication number WO9938892

  • Eyholzer Ch, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksmann K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  • Gray DG (1983) Liquid crystalline cellulose derivatives. J Appl Polym Sci Appl Polym Symp 37:179–192

    CAS  Google Scholar 

  • Herrick FW (1984) Process for preparing microfibrillated cellulose. Patent publication number US4481077

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Horio M, Kamei E, Matsunobu K (1988) Dynamic measurements on polymer liquid crystals II. Thermotropic mesophase of hydroxypropyl cellulose. J Soc Rheol Jpn 16:27–32

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Biores 3:929–980

    Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SC, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew A, Hussein M, Oksmann K (2009) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose. doi: 10.1007/s10570-009-9387-9

  • Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Proceedings of the 10th fundamental research symposium, Oxford, 1235–1260

  • Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Svensk Papperstidning 85:R146–R151

    Google Scholar 

  • Lopez-Suevos F, Eyholzer Ch, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17:387–398

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Pizzoli M, Scandola M, Ceccorulli G (1991) Dielectrical and mechanical loss processes in hydroxypropylcellulose. Plast Rubber Comp Process Appl 16:239–244

    CAS  Google Scholar 

  • Rials TG, Glasser WG (1988) Thermal and dynamic mechanical properties of hydroxypropyl cellulose films. J Appl Polym Sci 36:749–758

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Scallan AM, Tigerström AC (1992) Swelling and elasticity of the cell walls of pulp fibers. J Pulp Pap Sci 18:188–193

    CAS  Google Scholar 

  • Seydibeyoğlu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Comp Sci Technol 68:908–914

    Article  Google Scholar 

  • Shimamura K, White JL, Fellers JF (1981) Hydroxypropylcellulose, a thermotropic liquid crystal: characteristics and structure development in continuous extrusion and melt spinning. J Appl Polym Sci 26:2165–2180

    Article  CAS  Google Scholar 

  • Suto S, White JL, Fellers JF (1982) A comparative study of the thermotropic mesomorphic tendencies and rheological characteristics of three cellulose derivatives: ethylene and propylene oxide esters and an acetate butyrate ester. Rheol Acta 21:62–71

    Article  CAS  Google Scholar 

  • Suto S, Kudo M, Karasawa M (1986) Static tensile and dynamic mechanical properties of hydroxypropylcellulose films prepared under various conditions. J Appl Polym Sci 31:1327–1341

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–823

    CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloid Surf 27:163–173

    Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axns K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Werbowyi RS, Gray DG (1980) Ordered phase formation in concentrated hydroxypropylcellulose solutions. Macromolecules 13:69–73

    Article  Google Scholar 

  • Werbowyj RS, Gray DG (1976) Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Mol Cryst Liq Cryst 34(Letters): 97–103

    Google Scholar 

  • Wojciechowski P (2000) Thermotropic mesomorphism of selected (2-hydroxypropyl) cellulose derivatives. J Appl Polym Sci 76:837–844

    Article  CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Young RA (1994) Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130

    Article  CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future-prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10:69–77

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the State Secretariat for Education and Research (SER) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Eyholzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyholzer, C., Lopez-Suevos, F., Tingaut, P. et al. Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose 17, 793–802 (2010). https://doi.org/10.1007/s10570-010-9423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9423-9

Keywords

Navigation