Skip to main content
Log in

Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The structure of microcrystalline cellulose (MCC) made by mild acid hydrolysis from cotton linter, flax fibres and sulphite or kraft cooked wood pulp was studied and compared with the structure of the starting materials. Crystallinities and the length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. The morphological differences were studied by scanning electron microscopy. A model for the changes in microfibrillar structure between native materials, pulp and MCC samples was proposed. The results indicated that from softwood or hardwood pulp, flax cellulose and cotton linter MCC with very similar nanostructures were obtained with small changes in reaction conditions. The crystallinity of MCC samples was 54–65%. The width and the length of the cellulose crystallites increased when MCC was made. For example, between cotton and cotton MCC the width increased from 7.1 nm to 8.8 nm and the length increased from 17.7 nm to 30.4 nm. However, the longest crystallites were found in native spruce wood (35–36 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson S (2007) A study of the nanostructure of the cell wall of the tracheids of conifer xylem by x-ray scattering. Ph.D. thesis, University of Helsinki. https://doi.org/urn.fi/URN:ISBN:952-10-3235-9

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparision of measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) The crystallinity of wood and the size of cellulose crystallites in Norway spruce [Picea abies (L.) Karst]. J Wood Sci 49(6):531–537

    Google Scholar 

  • Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59:422–427

    Article  CAS  Google Scholar 

  • Astley OM, Donald MA (2001) A small-angle x-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromolecules 2:672–680

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose—a composite of 2 distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  Google Scholar 

  • Battista JA (1975) Microcrystal polymer science. McGraw-Hill Book Inc., USA, 208pp

  • Briki F, Busson B, Doucet J (1998) Organization of microfibrils in keratin fibers studied by X-ray scattering modelling using the paracrystal concept. Biochim Biophys Acta 1429:57–68

    Article  CAS  Google Scholar 

  • Buckton G, Yonemochi E, Moffat AC (1999) Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Int J Pharm 181(1):41

    Article  CAS  Google Scholar 

  • Busson B, Doucet J (1999) Distribution and interference functions for two-dimensional hexagonal paracrystals. Acta Cryst A 56:68–72

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420

    Article  CAS  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • El-Sakhawy M, Hassan ML (2007) Physical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 67:1–10

    Article  CAS  Google Scholar 

  • Emons AM, Höfte H, Mulder BM (2007) Microtubules and cellulose microfibrils: how intimate is their relationship? Trends Plant Sci 12(7):279–281

    Article  CAS  Google Scholar 

  • Feigin LA, Svergun DI (1987) Structure analysis by small angle X-ray and neutron scattering. Plenum Press, New York, pp 90–94

    Book  Google Scholar 

  • Fengel D (1993) Structural changes of cellulose and their effects on the OH/CH2 valency vibration range in FTIR spectra. In: Kennedy JF, Phillips GO, Williams PA, Piculell I (eds) Cellulose and cellulose derivatives: physico-chemical aspects and industrial applications. Woodhead Publ. Ltd, Cambridge, pp 75–84

    Google Scholar 

  • Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835

    Article  CAS  Google Scholar 

  • Fronk W, Wilke W (1985) Small angle scattering of partially oriented polymers: model calculations with monoclinic macrolattice. Colloid Polym Sci 263:97–108

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485

    Article  CAS  Google Scholar 

  • Ioelovich M (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym 43:110–113

    Article  Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  • Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell structure in Picea abies. A small-angle scattering study. Macromolecules 29:8435–8440

    Article  CAS  Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40

    Article  CAS  Google Scholar 

  • Knaapila M, Svensson C, Barauskas J, Zackrisson M, Nielsen SS, Toft KN, Vestergaard B, Arleth L, Olsson U, Pedersen JS, Cerenius Y (2009) A new small-angle X-ray scattering set-up on the crystallography beamline I711 at MAX-lab. J Synchrotron Rad (submitted)

  • Kotelnikova NE, Panarin EF (2005) Cellulose modification by biologically active substances for biomedical applications. Cellul Chem Technol 39(5–6):437–450

    CAS  Google Scholar 

  • Kotelnikova NE, Petropavlovsky GA, Shevelev VA, Vasil’eva GG, Volkova LA (1976) Interaction of microcrystalline cellulose with water. Cellul Chem Technol 4(10):391–399

    Google Scholar 

  • Kotelnikova NE, Petropavlovsky GA, Hou Y (1991) Hydrolytic destruction and properties of bleached and unbleached cellulose samples from deciduous wood samples (aspen and poplar). In: Chemistry and delignification of cellulose. Zinatne, Riga, pp 79–88

  • Kotelnikova NE, Panarin EF, Serimaa R, Paakkari T, Sukhanova TE, Gribanov AV (2000) Study of flax fibres structure by WAXS, IR- and 13C NMR spectroscopy and SEM. In: Kennedy JF, Lonnberg B (eds) Cellulosic pulps, fibres and materials. Woodhead Publ. Ltd, Cambridge, pp 169–180

    Chapter  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science Publishers, USA, 376pp

  • Lotfy M, El-osta M, Kellogg RM, Foschi RO, Butters RG (1974) A mechanistic approach to crystallite length as related to cell-wall structure. Wood Fiber 6:36–45

    Google Scholar 

  • Lundgren C (2004) Cell wall thickness and tangential and radial diameter of fertilized and irrigated Norway spruce. Silva Fenn 38(1):95–106

    Google Scholar 

  • Matsuoka H, Tanaka H, Hashimoto T, Ise N (1987) Elastic scattering from cubic lattice systems with paracrystalline distortion. Phys Rev B 36:1754–1765

    Article  CAS  Google Scholar 

  • Mu XQ (1998) X-ray diffraction by a one-dimensional paracrystal of limited size. Acta Cryst A 54:606–616

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama Y, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  • Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210

    Article  CAS  Google Scholar 

  • Petropavlovsky GA, Kotelnikova NE (1985) Phenomenological model of fine cellulose structure on the basis of the study of heterogeneous and homogeneous destruction. Acta Polym 36(2):118–123

    Article  Google Scholar 

  • Petropavlovsky GA, Kotelnikova NE, Pogodina TE (1980) Study of the structure and chromatographic properties of microcrystalline cellulose samples from birch wood. Wood Chem 6:3–12

    Google Scholar 

  • Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative Poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528

    Article  CAS  Google Scholar 

  • Peura M, Müller M, Vainio U, Sarén MP, Saranpää P, Serimaa R (2007) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees Struct Funct. doi:https://doi.org/10.1007/s00468-007-0168-5

    Article  Google Scholar 

  • Peura M, Andersson S, Salmi A, Karppinen T, Torkkeli M, Hæggström E, Serimaa R (2009) Changes in nanostructure of wood cell wall during deformation. Adv Mater Sci Wood Mat Sci Forum. doi:https://doi.org/10.4028/3-908453-08-9.126

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 21:5555–5561

    Article  CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327:873–880

    Article  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry, fundamentals and applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15(4):265–273

    Article  Google Scholar 

  • Terech P, Chazeau L, Cavaille JY (1999) A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32:1872–1875

    Article  CAS  Google Scholar 

  • Wilke W (1983) General lattice factor of the ideal paracrystal. Acta Cryst A 39:864–867

    Article  Google Scholar 

  • Wilke W, Bratrich M (1991) Investigation of the superstructure of polymers during deformation by synchrotron radiation. J Appl Cryst 24:645–650

    Article  CAS  Google Scholar 

  • Zografi G, Kontny MJ, Yang AYS, Brenner GS (1984) Surface area and water vapor sorption of macrocrystalline cellulose. Int J Pharm 18:99–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank MAX-lab for the possibility to conduct the SAXS measurements. The National Graduate School in Materials Physics and University of Helsinki are acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritva Serimaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leppänen, K., Andersson, S., Torkkeli, M. et al. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16, 999–1015 (2009). https://doi.org/10.1007/s10570-009-9298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9298-9

Keywords

Navigation