Skip to main content

Advertisement

Log in

Attitude dynamics of a rigid body in Keplerian motion

Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper studies the attitude dynamics of a rigid body in a Keplerian orbit. We show that the use of Classical Rodrigues Parameters for the attitude motion of the rigid body subject to gravity-gradient torques enables us to characterize the equilibria associated with the rotational motion about its mass center. A parametric study of the stability of equilibria is conducted to show that large oscillations are induced due to the energy exchange between the pitch and roll–yaw motions, specifically near the 2:1 resonant commensurability regions. A visualization tool is developed to study these pitch oscillations and gain insight into the rigid body motion near internal resonance conditions. A measure of coupling between the pitching and roll–yaw motions is developed to quantify the energy exchange utilizing information from the state transition matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Battin, R.H.: An introduction to the mathematics and methods of astrodynamics. AIAA (1999)

  • Beletsky, V.V.: The libration of a satellite on an elliptic orbit. In: Roy, M. (ed.) Dynamics of Satellites/Dynamique des Satellites, pp. 219–230. Springer, Berlin (1963)

    Chapter  Google Scholar 

  • Beletskii, V.V.: Motion of Artificial Satellite About its Center of Mass. NASA TT F-429 (1966)

  • Breakwell, J.V., Pringle Jr, R.: Nonlinear resonance affecting gravity-gradient stability (1966)

  • Brereton, R.C., Modi, V.J.: Periodic solutions associated with the gravity-gradient-oriented system. I-analytical and numerical determination. AIAA J. 7(7), 1217–1225 (1969)

    Article  ADS  Google Scholar 

  • Brereton, R.C., Modi, V.J.: Periodic solutions associated with the gravity-gradient-oriented system. II-stability analysis. AIAA J. 7(8), 1465–1468 (1969)

    Article  ADS  Google Scholar 

  • da Silva, M.R.C.: Attitude stability of a gravity-stabilized gyrostat satellite. Celest. Mech. 2(2), 147–165 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  • DeBra, D.B., Delp, R.H.: Rigid body attitude stability and natural frequencies in a circular orbit. J. Astron. Sci. 8(1), 14–17 (1961)

    Google Scholar 

  • Eapen, R.T., Frueh, C.: Averaged solar radiation pressure modeling for high area-to-mass ratio objects in geosynchronous orbits. Adv. Space Res. 62(1), 127–141 (2018)

    Article  ADS  Google Scholar 

  • Eapen, R., Majji, M., Alfriend, K.T.: Equilibria and stability of the attitude motions of a gravity gradient satellite. In: Presented at the AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, August 19–23 (2018)

  • Floquet, G.: Sur les equations differentielles lineaires. Ann. ENS 12, 47–88 (1883)

    MATH  Google Scholar 

  • Früh, C., Schildknecht, T.: Attitude motion of space debris objects under influence of solar radiation pressure and gravitiy. In: 63rd International Astronautical Congress (2012)

  • Früh, C., Kelecy, T.M., Jah, M.K.: Coupled orbit-attitude dynamics of high area-to-mass ratio (HAMR) objects: influence of solar radiation pressure, Earth’s shadow and the visibility in light curves. Celest. Mech. Dyn. Astron. 117(4), 385–404 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Gerlach, O.H.: Attitude stabilization and control of earth satellites. Report VTH 122. Technische Hogeschool Delft Vliegtuigbouwkunde, Delft The Netherlands (1965)

  • Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, Boston (2001). ISBN: 978-0-201-65702-9

    MATH  Google Scholar 

  • Gouliaev, V.I., Zubritskaya, A.L., Koshkin, V.L.: Universal sequence of bifurcation of doubling of the oscillation period for a satellite in an elliptical orbit. Mech. Solids 24, 1–6 (1989)

    Google Scholar 

  • Hitzl, D.L.: Nonlinear attitude motion near resonance. AIAA J. 7(6), 1039–1047 (1969)

    Article  ADS  Google Scholar 

  • Hughes, P.C.: Spacecraft Attitude Dynamics. Dover Publications, INC, New York (2004)

    Google Scholar 

  • Junkins, J.L., Singla, P.: How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics. Adv. Astron. Sci. 115(SUPPL.), 1–45 (2003)

    Google Scholar 

  • Kane, T.R.: Attitude stability of Earth-pointing satellites. AIAA J. 3(4), 726–731 (1965)

    Article  ADS  Google Scholar 

  • Karasopoulos, H.A., Richardson, D.L.: Numerical investigation of chaos in the attitude motion of a gravity-gradient satellite. Astrodynamics 1993, 1851–1870 (1994)

    Google Scholar 

  • Karasopoulos, H.A.: Nonlinear dynamics of the planar pitch attitude motion for a gravity-gradient satellite (No. WL-TR-94-3123). Wright Lab Wright-Patterson AFB OH (1994)

  • Koch, B.P., Bruhn, B.: Chaotic and periodic motions of satellites in elliptic orbits. Z. Naturforschung A 44(12), 1155–1162 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Kuryakov, V.A.: A method of constructing polhodes of an intermediate motion in the dynamics of a rigid body. J. Appl. Math. Mech. 50(5), 666–669 (1986)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Mechanics. Course of Theoretical Physics, vol. 1, 3rd edn. Reed Educational and Professional Publishing Ltd, Oxford (1976)

    Google Scholar 

  • Malkin, I., Gilévich.: Theory of Stability of Motion. United States Atomic Energy Commission, Office of Technical Information, Oak Ridge (1958)

  • Meirovitch, L., Wallace, F.: Attitude instability regions of a spinning unsymmetrical satellite in a circular orbit. J. Astron. Sci. 14, 123 (1967)

    Google Scholar 

  • Schaub, H., Junkins, J.L.: Stereographic orientation parameters for attitude dynamics: a generalization of the Rodrigues parameters. J. Astron. Sci. 44(1), 1–19 (1996)

    MathSciNet  Google Scholar 

  • Tong, X., Rimrott, F.P.: Numerical studies on chaotic planar motion of satellites in an elliptic orbit. Chaos Solitons Fractals 1(2), 179–186 (1991)

    Article  ADS  Google Scholar 

  • Vitins, M.: Keplerian motion and gyration. Celest. Mech. 17(2), 173–192 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  • Whittaker, E., McCrae, S.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge Mathematical Library). Cambridge University Press, Cambridge (1988). https://doi.org/10.1017/CBO9780511608797

    Book  Google Scholar 

  • Winter, O.C., Murray, C.D.: Resonance and chaos: I. First-order interior resonances. Astron. Astrophys. 319, 290–304 (1997)

    ADS  Google Scholar 

  • Zlatoustov, V.A., Okhotsimsky, D.E., Sarychev, V.A., Torzhevsky, A.P.: Investigation of a satellite oscillations in the plane of an elliptic orbit. Cosm. Res. 2(5), 657–666 (1964)

    Google Scholar 

Download references

Acknowledgements

This research described in this paper was carried out at and supported by the Department of Aerospace Engineering, Texas A&M University, College Station, TX. Prof. John Junkins is acknowledged for suggesting the osculating surface that led to the development of Binet–Poincaré sections of this paper. The work in this paper is partially supported by the National Science Foundation under Award No. NSF CMMI-1634590. It is also partially supported by the U.S. Air Force Office of Scientific Research (FA9550-15-1-0313 and FA9550-17-1-0088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan T. Eapen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eapen, R.T., Majji, M. & Alfriend, K.T. Attitude dynamics of a rigid body in Keplerian motion. Celest Mech Dyn Astr 133, 2 (2021). https://doi.org/10.1007/s10569-020-10000-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-10000-w

Keywords

Navigation