Skip to main content
Log in

On the Stability Regions of the Trojan Asteroids

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The orbits of fictitious bodies around Jupiter’s stable equilibrium points L4 and L5 were integrated for a fine grid of initial conditions up to 100 million years. We checked the validity of three different dynamical models, namely the spatial, restricted three body problem, a model with Sun, Jupiter and Saturn and also the dynamical model with the Outer Solar System (Jupiter to Neptune). We determined the chaoticity of an orbit with the aid of the Lyapunov Characteristic Exponents (=LCE) and used also a method where the maximum eccentricity of an orbit achieved during the dynamical evolution was examined. The goal of this investigation was to determine the size of the regions of motion around the equilibrium points of Jupiter and to find out the dependance on the inclination of the Trojan’s orbit. Whereas for small inclinations (up to i=20°) the stable regions are almost equally large, for moderate inclinations the size shrinks quite rapidly and disappears completely for i>60°. Additionally, we found a difference in the dynamics of orbits around L4 which – according to the LCE – seem to be more stable than the ones around L5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • C. Beaugé F. Roig (2001) ArticleTitle‘A semianalytical model for the motion of the trojan asteroids: Proper elements and families’ Icarus 153 391–415 Occurrence Handle10.1006/icar.2001.6699

    Article  Google Scholar 

  • A. Celletti A. Giorgilli (1991) ArticleTitle‘On the stability of the Lagrangian points in the spatial restricted problem of three bodies’ Celest. Mech. Dynam. Astron. 50 31–58 Occurrence Handle10.1007/BF00048985

    Article  Google Scholar 

  • R. Brasser D.C. Heggie S. Mikkola (2004) ArticleTitle‘One to one resonance at high inclination’ Celest. Mech. Dynam. Astron. 88 123–152 Occurrence Handle10.1023/B:CELE.0000016810.65114.17

    Article  Google Scholar 

  • R. Dvorak K. Tsiganis (2000) ArticleTitle‘Why do Trojan ASCs (not) escape?’ Celest. Mech., Dyn. Astron. 78 125–136

    Google Scholar 

  • C. Efthymiopoulos (2005) ArticleTitle‘Formal integrals and Nekhoroshev stability in a mapping model for the Trojan asteroids Celest. Mech. Dynam. Astron. 92 31–54

    Google Scholar 

  • B. Érdi (1988) ArticleTitle‘Long periodic pertubations of Trojan asteroids’ Celest. Mech. Dynam. Astron. 43 303–308

    Google Scholar 

  • B. Érdi (1997) ArticleTitle‘The Trojan Problem’ Celest. Mech. Dynam. Astron. 65 149–164 Occurrence Handle10.1007/BF00048444 Occurrence HandleMR1461603

    Article  MathSciNet  Google Scholar 

  • C. Froeschlé (1984) ArticleTitle‘The Lyapunov characteristic exponents – applications to celestial mechanics’ Celest. Mech. 34 95 Occurrence Handle10.1007/BF01235793

    Article  Google Scholar 

  • A. Hanslmeier R. Dvorak (1984) ArticleTitle‘Numerical Integrations with Lie-series to celestial mechanics’ A&A 132 203

    Google Scholar 

  • H. Levison E.M. Shoemaker C.S. Shoemaker (1997) ArticleTitle‘The dispersal of the Trojan asteroid swarm’ Nature 385 42–44 Occurrence Handle10.1038/385042a0

    Article  Google Scholar 

  • H. Lichtenegger (1984) ArticleTitle‘The dynamics of bodies with variable masses’ Celest. Mech. 34 357–368 Occurrence Handle10.1007/BF01235814

    Article  Google Scholar 

  • F. Marzari H. Scholl (2002) ArticleTitle‘On the Instability of Jupiter’s Trojans’ Icarus 159 328–338 Occurrence Handle10.1006/icar.2002.6904

    Article  Google Scholar 

  • A. Milani (1993) ArticleTitle‘The Trojan Asteroid Belt: Proper Elements, Stability, Chaos and Families’ Celest. Mech. Dynam. Astron. 57 59–94 Occurrence Handle10.1007/BF00692462

    Article  Google Scholar 

  • A. Milani (1994) ArticleTitle‘The Dynamics of the Trojan asteroids’ 160:IAU Symp. Asteroids, Comets, Meteors 160 159

    Google Scholar 

  • E. Pilat-Lohinger R. Dvorak Ch. Burger (1999) ArticleTitle‘Trojans in stable chaotic motion’ Celest Mech. Dynam. Astron. 73 117–126 Occurrence Handle10.1023/A:1008338811969

    Article  Google Scholar 

  • E. Rabe (1967) ArticleTitle‘Third-order stability of the long-period Trojan librations’ Astron. Journal 72 10 Occurrence Handle10.1086/110196

    Article  Google Scholar 

  • P. Robutel F. Gabern A. Jorba (2005) ArticleTitle‘The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system’ Celest. Mech. Dynam. Astron. 92 55–71

    Google Scholar 

  • R. Schwarz M. Gyergyovits R. Dvorak (2004) ArticleTitle‘On the stability of high inclined L4 and L5 Trojans’ Celest Mech. Dynam. Astron., 90 139–148

    Google Scholar 

  • R. Schwarz M. Gyergyovits (2003) ‘Stability of Trojans with high inclined orbits’ F. Freistetter R. Dvorak B. Érdi (Eds) Proceedings of the 3rd Austrian Hungarian workshop on Trojans and related topics Eòtvòs University Press Budapest

    Google Scholar 

  • C. Skokos A. Docoumetzidis (2001) ArticleTitle‘Effective stability of the Trojan asteroids’ A&A 367 729–736

    Google Scholar 

  • K. Tsiganis R. Dvorak E. Pilat-Lohinger (2000) ArticleTitle‘Thersites: a ‘jumping’ Trojan ?’ A&A 354 1091–1100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Dvorak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorak, R., Schwarz, R. On the Stability Regions of the Trojan Asteroids. Celestial Mech Dyn Astr 92, 19–28 (2005). https://doi.org/10.1007/s10569-005-2630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-005-2630-2

Keywords

Navigation