Skip to main content
Log in

Mechanism of Dcp2/RNCR3/Dkc1/Snora62 axis regulating neuronal apoptosis in chronic cerebral ischemia

  • RESEARCH
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract  

RNA-binding proteins (RBPs), long non-coding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs) were found to play crucial regulatory roles in ischemic injury. Based on GEO databases and our experimental results, we selected Dcp2, lncRNA-RNCR3, Dkc1, and Snora62 and Foxh1 as research candidates. We found that expression levels of Dcp2, RNCR3, Dkc1, Snora62, and Foxh1 were upregulated in oxygen glucose deprivation-treated HT22 cells and hippocampal tissues subject to chronic cerebral ischemia (CCI). Silencing of Dcp2, RNCR3, Dkc1, Snora62, and Foxh1 all inhibited apoptosis of oxygen glucose deprivation-treated HT22 cells. Moreover, Dcp2 promoted RNCR3 expression by increasing its stability. Importantly, RNCR3 may act as a molecular skeleton to bind to Dkc1 and recruit Dck1 to promote snoRNP assembly. Snora62 was responsible for pseudouridylation at 28S rRNA U3507 and U3509 sites. Pseudouridylation levels of 28S rRNA were reduced after knockdown of Snora62. Decreased pseudouridylation levels inhibited the translational activity of its downstream target, Foxh1. Our study further confirmed that Foxh1 transcriptionally promoted the expression of Bax and Fam162a. Notably, experiments in vivo showed that Dcp2 knockdown combined with RNCR3 knockdown and Snora62 knockdown resulted in an anti-apoptosis effect. In conclusion, this study suggests that the axis Dcp2/RNCR3/Dkc1/Snora621 is important for the regulation of neuronal apoptosis induced by CCI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used that support the findings of this study are available from the corresponding author on reasonable request.

References  

  • Aguilar LC, Paul B, Reiter T, Gendron L, Arul NambiRajan A, Montpetit R, et al. Altered rRNA processing disrupts nuclear RNA homeostasis via competition for the poly(A)-binding protein Nab2. Nucleic Acids Res. 2020;48:11675–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attisano L, Silvestri C, Izzi L, Labbé E. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Mol Cell Endocrinol. 2001;180:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis. 2018;9:281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, et al. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. Biochim Biophys Acta Mol Cell Res. 2019;1866:118529.

    Article  CAS  PubMed  Google Scholar 

  • Carlile TM, Martinez NM, Schaening C, Su A, Bell TA, Zinshteyn B, et al. mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol. 2019;15:966–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res. 2018;46:905–16.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu X, Li B, Zhang Q, Wang J, Zhang W, et al. Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression and regulated by microRNA-23a. Int J Biol Sci. 2017;13:518–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Shi YJ, Li Z, Kang H, Xiang Z, Kong LF. FAST1 promotes the migration and invasion of colorectal cancer cells. Biochem Biophys Res Commun. 2019;509:407–13.

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Su MY, Maggi LB Jr, Lu L, Mullins C, Crosby S, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest. 2012;122:2793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu HP, Cifuentes-Rojas C, Kesner B, Aeby E, Lee HG, Wei C, et al. TERRA RNA antagonizes ATRX and protects telomeres. Cell. 2017;170:86-101.e116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deryusheva S, Talhouarne GJS, Gall JG. “Lost and found”: snoRNA annotation in the Xenopus genome and implications for evolutionary studies. Mol Biol Evol. 2020;37:149–66.

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Jia X, Wang C, Xu J, Gao SJ, Lu C. A DHX9-lncRNA-MDM2 interaction regulates cell invasion and angiogenesis of cervical cancer. Cell Death Differ. 2019;26:1750–65.

    Article  CAS  PubMed  Google Scholar 

  • Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond). 2017;131:2451–68.

    Article  CAS  PubMed  Google Scholar 

  • Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 2017;15:177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng T, Yamashita T, Zhai Y, Shang J, Nakano Y, Morihara R, et al. Chronic cerebral hypoperfusion accelerates Alzheimer’s disease pathology with the change of mitochondrial fission and fusion proteins expression in a novel mouse model. Brain Res. 2018;1696:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guida N, Mascolo L, Serani A, Cuomo O, Anzilotti S, Brancaccio P, et al. GATA3 (GATA-binding protein 3)/KMT2A (lysine-methyltransferase-2A) complex by increasing H3K4-3me (trimethylated lysine-4 of histone-3) upregulates NCX3 (Na(+)-Ca(2+) exchanger 3) transcription and contributes to ischemic preconditioning neuroprotection. Stroke. 2021;52:3680–91.

    Article  CAS  PubMed  Google Scholar 

  • Håkansson KEJ, Goossens EAC, Trompet S, van Ingen E, de Vries MR, van der Kwast R, et al. Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease. Cardiovasc Res. 2019;115:1519–32.

    Article  PubMed  Google Scholar 

  • Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, et al. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget. 2016;7:22159–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol. 2015;16:581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lana D, Ugolini F, Melani A, Nosi D, Pedata F, Giovannini MG. The neuron-astrocyte-microglia triad in CA3 after chronic cerebral hypoperfusion in the rat: protective effect of dipyridamole. Exp Gerontol. 2017;96:46–62.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 2016;126:4616–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei Z, Yi C. A radiolabeling-free, qPCR-based method for locus-specific pseudouridine detection. Angew Chem Int Ed Engl. 2017;56:14878–82.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Yang G, Zhao T, Cao GJ, Xiong L, Xia W, et al. Small ncRNA expression and regulation under hypoxia in neural progenitor cells. Cell Mol Neurobiol. 2011;31:1–5.

    Article  PubMed  Google Scholar 

  • Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Li H, Deng J, Wu Q, Liao C, Xiao Q, et al. QKI 6 ameliorates CIRI through promoting synthesis of triglyceride in neuron and inhibiting neuronal apoptosis associated with SIRT1-PPARγ-PGC-1α axis. Brain Behav. 2021;11:e2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liu X, Zheng J, Song J, Liu Y, Ruan X, et al. Lin28A promotes IRF6-regulated aerobic glycolysis in glioma cells by stabilizing SNHG14. Cell Death Dis. 2020;11:447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Han Y, He J, Zhou B, Fang P, Li X. LncRNA FOXD3-AS1 knockdown protects against cerebral ischemia/reperfusion injury via miR-765/BCL2L13 axis. Biomed Pharmacother. 2020;132: 110778.

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(1):R17–29.

    Article  Google Scholar 

  • McCann KL, Kavari SL, Burkholder AB, Phillips BT, Hall TMT. H/ACA snoRNA levels are regulated during stem cell differentiation. Nucleic Acids Res. 2020;48:8686–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011;14:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nossent AY, Ektefaie N, Wojta J, Eichelberger B, Kopp C, Panzer S, et al. Plasma levels of snoRNAs are associated with platelet activation in patients with peripheral artery disease. Int J Mol Sci. 2019;20(23):5975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perina D, Korolija M, Hadžija MP, Grbeša I, Belužić R, Imešek M, et al. Functional and structural characterization of FAU gene/protein from marine sponge Suberites domuncula. Mar Drugs. 2015;13:4179–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana DD, Ren X, Hu H, Engler-Chiurazzi EB, Rellick SL, Lewis SE, et al. Gradual common carotid artery occlusion as a novel model for cerebrovascular hypoperfusion. Metab Brain Dis. 2018;33:2039–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanathan M, Porter DF, Khavari PA. Methods to study RNA-protein interactions. Nat Methods. 2019;16:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si W, Li Z, Huang Z, Ye S, Li X, Li Y, et al. RNA binding protein motif 3 inhibits oxygen-glucose deprivation/reoxygenation-induced apoptosis through promoting stress granules formation in PC12 cells and rat primary cortical neurons. Front Cell Neurosci. 2020;14:559384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science. 1997;275:536–40.

    Article  CAS  PubMed  Google Scholar 

  • Sumita M, Desaulniers JP, Chang YC, Chui HM, Clos L 2nd, Chow CS. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. RNA. 2005;11:1420–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka M, Nobe Y, Yamaki Y, Yamauchi Y, Ishikawa H, Takahashi N, et al. The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res. 2016;44:8951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie Ruiz Velasco A, Welten SMJ, Goossens EAC, Quax PHA, Rappsilber J, Michlewski G, et al. Posttranscriptional regulation of 14q32 microRNAs by the CIRBP and HADHB during vascular regeneration after ischemia. Mol Ther Nucleic Acids. 2019;14:329–38.

    Article  CAS  PubMed  Google Scholar 

  • Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (review). Oncol Rep. 2017;37:3–9.

    Article  PubMed  Google Scholar 

  • Wu L, Zheng J, Chen P, Liu Q, Yuan Y. Small nucleolar RNA ACA11 promotes proliferation, migration and invasion in hepatocellular carcinoma by targeting the PI3K/AKT signaling pathway. Biomed Pharmacother. 2017;90:705–12.

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang H, Yuan D, Yao J, Meng L, Li K, et al. RUNX1-activated upregulation of lncRNA RNCR3 promotes cell proliferation, invasion, and suppresses apoptosis in colorectal cancer via miR-1301-3p/AKT1 axis in vitro and in vivo. Clin Transl Oncol. 2020;22:1762–77.

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, et al. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939.

    Article  PubMed  Google Scholar 

  • Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine–pseudouridylation. RNA Biol. 2014;11:1483–94.

    Article  PubMed  Google Scholar 

  • Zhang L, Cao Y, Wei M, Jiang X, Jia D. Long noncoding RNA-RNCR3 overexpression deleteriously affects the growth of glioblastoma cells through miR-185-5p/Krüppel-like factor 16 axis. J Cell Biochem. 2018;119:9081–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ruan X, Ma J, Liu X, Zheng J, Liu Y, et al. DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells. Mol Ther. 2020;28:613–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang X, Yang S, Bao Y, Xu D, Liu L. FOXH1 promotes lung cancer progression by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int. 2021a;21:293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yan YF, Lv Q, Li YJ, Wang RR, Sun GB, et al. miR-4293 upregulates lncRNA WFDC21P by suppressing mRNA-decapping enzyme 2 to promote lung carcinoma proliferation. Cell Death Dis. 2021b;12:735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Song J, Dong W, Liu X, Yang C, Wang D, et al. The MBNL1/circNTRK2/PAX5 pathway regulates aerobic glycolysis in glioblastoma cells by encoding a novel protein NTRK2-243aa. Cell Death Dis. 2022;13:767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Jaladanki SK, Liu L, Xiao L, Chung HK, Wang JY, et al. H19 long noncoding RNA regulates intestinal epithelial barrier function via microRNA 675 by interacting with RNA-binding protein HuR. Mol Cell Biol. 2016;36:1332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by grants from the Natural Science Foundation of China (82173071), China Postdoctoral Science Foundation (2022M723519), and Outstanding Scientific Fund of Shengjing Hospital (201802).

Author information

Authors and Affiliations

Authors

Contributions

JY was mainly responsible for experiments and data collecting. YBZ, WWD, and XBL mainly contributed to data analysis. JY, XLR, TGE, JS, and ZC mainly contributed to materials preparing and submission. YXX, LBL, and PW were mainly responsible for proofreading. YHL designed the research. All authors approved the final paper.

Corresponding author

Correspondence to Yunhui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

For the animal studies, a protocol detailing experimental procedures following the China Medical University guidelines was submitted to and approved by Ethics Committee of China Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.52 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, X., Zhao, Y. et al. Mechanism of Dcp2/RNCR3/Dkc1/Snora62 axis regulating neuronal apoptosis in chronic cerebral ischemia. Cell Biol Toxicol 39, 2881–2898 (2023). https://doi.org/10.1007/s10565-023-09807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09807-8

Keywords

Navigation