Skip to main content
Log in

Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) has high morbidity and mortality. Epithelial-mesenchymal transition (EMT) is associated with CRC progression and metastasis. Glutaminolysis is essential for malignancy of cancer cells. Here, we examined the effects of curcumol on CRC EMT. We observed that curcumol suppressed invasion and migration in human CRC cells associated with upregulation of epithelial markers E-cadherin and Zonula occludens 1 and downregulation of mesenchymal markers N-cadherin and Vimentin as well as EMT-related transcription factors Snail and Twist. Curcumol increased intracellular levels of glutamine but decreased intracellular levels of glutamate, α-ketoglutarate, ATP, glutathione, and tricarboxylic acid cycle metabolites, suggesting interruption of glutaminolysis. Next, curcumol repressed glutaminase 1 (Gls1) mRNA and protein expression, and overexpression of Gls1 promoted EMT and abolished curcumol effects on CRC cell EMT. Molecular examinations showed that curcumol stimulated protein degradation of hypoxia-inducible factor-1α (HIF-1α) and prevented its nuclear accumulation in CRC cells. HIF-1α agonist deferoxamine (DFO) promoted HIF-1α binding to Gls1 promoter and increased Gls1 expression but abolished curcumol’s inhibitory effects on Gls1 expression. DFO also enhanced EMT and invasion and migration in CRC cells and eliminated curcumol effects. Furthermore, mouse CRC models were established with in vivo overexpression of HIF-1α and Gls1. Curcumol effectively inhibited CRC growth, metastasis, and EMT in mice, which was abrogated by overexpression of HIF-1α or Gls1. Altogether, stimulation of HIF-1α degradation was required for curcumol to disrupt EMT and repress invasion and migration in CRC cells through inhibiting Gls1-mediated glutaminolysis. Curcumol could be a promising candidate for intervention of CRC metastasis.

Graphical abstract

• Curcumol inhibits EMT and blocks glutaminolysis in CRC cells.

• Inhibition of Gls1 is required for curcumol blockade of glutaminolysis and EMT.

• Curcumol induces HIF-1α degradation leading to inhibition of Gls1 and blockade of glutaminolysis and EMT.

• Curcumol suppresses CRC growth and metastasis via inhibiting HIF-1α, glutaminolysis and EMT in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

α-KG:

α-Ketoglutarate

ChIP:

Chromatin immunoprecipitation

CHX:

Cycloheximide

CRC:

Colorectal cancer

DFO:

Deferoxamine

DMSO:

Dimethylsulfoxide

EMSA:

Electrophoretic mobility shift assay

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

GDH:

Glutamate dehydrogenase

Gls1:

Glutaminase 1

GSH:

Glutathione

GSSG:

L-glutathione oxidized

HE:

Hematoxylin-eosin

HIF-1α:

Hypoxia inducible factor-1α

PBS:

Phosphate buffered saline

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid

ZO-1:

Zonula occludens 1

References

  • Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216(5):1016–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard K, Logsdon NJ, Benavides GA, Sanders Y, Zhang J, Darley-Usmar VM, et al. Glutaminolysis is required for transforming growth factor-beta1-induced myofibroblast differentiation and activation. J Biol Chem. 2018;293(4):1218–28.

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Short SP, Williams CS. Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 2018;14(6):226–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211(8):557–69.

    Article  CAS  PubMed  Google Scholar 

  • Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res. 2019;42(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  • Ding M, Bu X, Li Z, Xu H, Feng L, Hu J, et al. NDRG2 ablation reprograms metastatic cancer cells towards glutamine dependence via the induction of ASCT2. Int J Biol Sci. 2020;16(16):3100–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, et al. Decoding colorectal cancer epigenomics. Cancer Genet. 2018;220:49–76.

    Article  PubMed  Google Scholar 

  • Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008;2008:pdb prot4986.

    PubMed  Google Scholar 

  • Fumagalli A, Suijkerbuijk SJE, Begthel H, Beerling E, Oost KC, Snippert HJ, et al. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat Protoc. 2018;13(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Trevino EN. Colorectal cancer stem cells in the progression to liver metastasis. Front Oncol. 2020;10:1511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R, et al. Therapeutic effects of curcumol in several diseases; an overview. Nutr Cancer. 2020:1-15.

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A. 2010;107(16):7455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Li C, Zhang H. Hypoxia and cancer cell metabolism. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):214–9.

    Article  CAS  PubMed  Google Scholar 

  • Joseph JP, Harishankar MK, Pillai AA, Devi A. Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 2018;80:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Kao SH, Wu KJ, Lee WH. Hypoxia, epithelial-mesenchymal transition, and TET-mediated epigenetic changes. J Clin Med. 2016;5:2.

    Article  Google Scholar 

  • Kim J, Hyun J, Wang S, Lee C, Lee JW, Moon EY, et al. Thymosin beta-4 regulates activation of hepatic stellate cells via hedgehog signaling. Sci Rep. 2017;7(1):3815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian N, Jiang Y, Zhang F, Jin H, Lu C, Wu X, et al. Curcumin regulates cell fate and metabolism by inhibiting hedgehog signaling in hepatic stellate cells. Lab Invest. 2015;95(7):790–803.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang J, Tao Y, Li X, Qin J, Bai Z, et al. Curcumol inhibits colorectal cancer proliferation by targeting miR-21 and modulated PTEN/PI3K/Akt pathways. Life Sci. 2019;221:354–61.

    Article  CAS  PubMed  Google Scholar 

  • Mates JM, Di Paola FJ, Campos-Sandoval JA, Mazurek S, Marquez J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin Cell Dev Biol. 2020;98:34–43.

    Article  CAS  PubMed  Google Scholar 

  • Munksgaard Thoren M, Vaapil M, Staaf J, Planck M, Johansson ME, Mohlin S, et al. Myc-induced glutaminolysis bypasses HIF-driven glycolysis in hypoxic small cell lung carcinoma cells. Oncotarget. 2017;8(30):48983–95.

    Article  PubMed  Google Scholar 

  • Muys BR, Sousa JF, Placa JR, de Araujo LF, Sarshad AA, Anastasakis DG, et al. miR-450a acts as a tumor suppressor in ovarian cancer by regulating energy metabolism. Cancer Res. 2019;79(13):3294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieszporek A, Skrzypek K, Adamek G, Majka M. Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochim Pol. 2019;66(4):509–20.

    CAS  PubMed  Google Scholar 

  • Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol. 2011;76:347–53.

    Article  CAS  PubMed  Google Scholar 

  • Shah R, Chen S. Metabolic signaling cascades prompted by glutaminolysis in cancer. Cancers (Basel). 2020;12(9).

  • Song Z, Wei B, Lu C, Li P, Chen L. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol Lett. 2017;14(3):3117–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol. 2012;3(2):117–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, et al. Role of hypoxic stress in regulating tumor immunogenicity, resistance and plasticity. Int J Mol Sci. 2018;19(10).

  • Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel). 2017;9(12).

  • Waldner MJ, Neurath MF. The molecular therapy of colorectal cancer. Mol Aspects Med. 2010;31(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dong Y, Liu H. Curcumol enhances the anti-tumor effects of metformin via suppressing epithelial-mesenchymal transition in triple-negative breast cancer. Ann Transl Med. 2020;8(15):946.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Huang F, Bai Z, Chi B, Wu J, Chen X. Curcumol inhibits growth and induces apoptosis of colorectal cancer LoVo cell line via IGF-1R and p38 MAPK pathway. Int J Mol Sci. 2015;16(8):19851–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9(1):545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei W, Rasul A, Sadiqa A, Sarfraz I, Hussain G, Nageen B, et al. Curcumol: from plant roots to cancer roots. Int J Biol Sci. 2019;15(8):1600–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Ren P, Su H, Yue M, Xiu R, Hu Y, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget. 2015;6(38):40655–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan D, Deng S, Gan W, Li S, Li Y. Curcumol attenuates epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via TGF-beta1. Mol Med Rep. 2018;17(6):7513–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng. 2017;19:163–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Suo C, Zheng C, Zhang H. Hypoxia and metabolism in metastasis. Adv Exp Med Biol. 2019;1136:87–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and material

All the data in the current research are available from the corresponding author on reasonable request.

Code availability

Not applicable

Funding

This work was supported by the National Natural Science Foundation of China (81873021 and 82074035), the Innovative Project of Postgraduate Training of Jiangsu Province (KYCX20_1486), and the Major Project for Science and Technology Development of Traditional Chinese Medicine of Jiangsu Province (2020ZX01).

Author information

Authors and Affiliations

Authors

Contributions

Decai Tang contributed to the design of the research and provided financial support. Yong Bian performed the experiments and analyzed the data. Gang Yin helped perform the cellular experiments. Gang Wang helped perform the animal experiments. Tiantian Liu conducted some other experiments. Li Liang helped analyze the data. Wen Zhang and Xinyue Yang revised the manuscript.

Corresponding author

Correspondence to Decai Tang.

Ethics declarations

Ethics approval

This study was approved by the Institutional and Local Committee on the Care and Use of Animals of Nanjing University of Chinese Medicine. All animals received humane care according to the National Institutes of Health (USA) guidelines.

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Yin, G., Wang, G. et al. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol Toxicol 39, 1957–1978 (2023). https://doi.org/10.1007/s10565-021-09681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09681-2

Keywords

Navigation