Skip to main content
Log in

Recent Advances in the Regulation of Oxygen Vacancies in MnO2 Nanocatalysts

  • Review
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Enhanced oxygen vacancy (VO) has been designated as an effective strategy to prepare high-performance MnO2 nanocatalysts for the oxidation of volatile organic compounds (VOC) for thereof unbalanced electronic structure, and rapid electron transfer which may even reduce the reaction temperature down to room temperature. Herein, the effects of the VO on the catalytic performance of nano-sized MnO2 were discussed by classifying the VO into surface-anchored and bulk-involved ones. Currently used introducing and modulating methods for VO including elemental doping, energetic particle bombardment, atmosphere heat treatment, mechanical chemistry, and redox methods are detailly reviewed. Corresponding regulating mechanisms for VO are expounded. Commonly used characterization methods including ESR, XPS, HRTEM, and UV-vis are reviewed. Furtherly, the unveiled question which is highly expected to be answered on VO of MnO2 nanocatalysts is proposed. The purpose of this review is to present the current status of research on MnO2 nanoparticles and to provide researchers with basic research ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by Catalytic Oxidation Technology onto various nanoparticles catalysts: a critical review. Appl Catal B 281:119447. https://doi.org/10.1016/j.aPcatb.2020.119447

    Article  CAS  Google Scholar 

  2. Jeong GH, Sasikala SP, Yun T, Lee GY, Lee WJ, Kim SO (2020) Nanoscale Assembly of 2D materials for Energy and Environmental Applications. Adv Mater 32(35):1907006. https://doi.org/10.1002/adma.201907006

    Article  CAS  Google Scholar 

  3. Wang J, Li J, Jiang C, Zhou P, Zhang P, Yu J (2017) The Effect of Manganese Vacancy in Birnessite-Type MnO2 on Room-Temperature Oxidation of Formaldehyde in Air. Applied Catalysis B: Environmental, 204, 147–155. DOI: https://doi.org/10.1016/j.apcatb.2016.11.036

  4. Sekine Y, Fukuda M, Takao Y, Ozano T, Sakuramoto H, Wang KW (2011) Simultaneous removal of formaldehyde and benzene in indoor air with a combination of Sorption- and decomposition-type air filters. Environ Technol 32(16):1983–1989. https://doi.org/10.1080/09593330.2011.562924

    Article  CAS  Google Scholar 

  5. Tian F-X, Li H, Zhu M, Tu W, Lin D, Han Y-F (2022) Effect of MnO2 polymorphs’ structure on low-temperature Catalytic Oxidation: crystalline controlled oxygen vacancy formation. ACS Appl Mater Interfaces 14(16):18525–18538. https://doi.org/10.1021/acsami.2c01727

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with Rod-, Wire-, Tube-, and Flower-Like Morphologies: highly effective catalysts for the removal of Toluene. Environ Sci Technol 46(7):4034–4041. https://doi.org/10.1021/es204038j

    Article  CAS  PubMed  Google Scholar 

  7. Zhang A, Gao R, Hu L, Zang X, Yang R, Wang S, Yao S, Yang Z, Hao H, Yan Y-M (2021) Rich Bulk Oxygen Vacancies-Engineered MnO2 with enhanced charge transfer kinetics for Supercapacitor. Chem Eng J 417:129186. https://doi.org/10.1016/j.cej.2021.129186

    Article  CAS  Google Scholar 

  8. Zhu G, Zhu J, Jiang W, Zhang Z, Wang J, Zhu Y, Zhang Q (2017) Surface Oxygen Vacancy Induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B 209:729–737. https://doi.org/10.1016/j.apcatb.2017.02.068

    Article  CAS  Google Scholar 

  9. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang W, Zhang T (2017) Defect-Engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater 7(18):1700005. https://doi.org/10.1002/aenm.201700005

    Article  CAS  Google Scholar 

  10. Yang Y, Zhang S, Wang S, Zhang K, Wang H, Huang J, Deng S, Wang B, Wang Y, Yu G (2015) Ball Milling Synthesized MnOx as Highly Active Catalyst for Gaseous POPs Removal: Significance of Mechanochemically Induced Oxygen Vacancies. Environ Sci Technol 49(7):4473–4480. https://doi.org/10.1021/es505232f

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Feng X, Nie Y, Chen S, Shi F, Xiong K, Ding W, Qi X, Hu J, Wei Z et al (2015) Insight into the Effect of Oxygen Vacancy Concentration on the Catalytic performance of MnO2. ACS Catal 5(8):4825–4832. https://doi.org/10.1021/acscatal.00320

    Article  CAS  Google Scholar 

  12. Chen, L.; Liu, Y.; Fang, X.; Cheng, Y. Simple Strategy for the Construction of Oxygen Vacancies on α-MnO2 Catalyst to Improve Toluene Catalytic Oxidation. Journal of Hazardous Materials, 2021, 409, 125020. DOI: https://doi.org/10.1016/j.jhazmat.2020.125020

  13. Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J.K.; Besenbacher, F. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2 (110). Phys. Rev. Lett, 2001, 87 (26), 266104. DOI: https://doi.org/10.1103/PhysRevLett.87.266104

  14. Yang, W.; Zhu, Y.; You, F.; Yan, L.; Ma, Y.; Lu, C.; Gao, P.; Hao, Q.; Li, W.Insights into the Surface-Defect Dependence of Molecular Oxygen Activation over Birnessite-Type MnO2. Applied Catalysis B: Environmental, 2018, 233, 184–193. DOI: https://doi.org/10.1016/j.apcatb.2018.03.107.

  15. Santos, V. P.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. L. The Role of Lattice Oxygen on the Activity of Manganese Oxides towards the Oxidation of Volatile Organic Compounds. Applied Catalysis B: Environmental, 2010, 99 (1–2), 353–363. DOI: https://doi.org/10.1016/j.apcatb.2010.07.007.

  16. Dong, C.; Qu, Z.; Jiang, X.; Ren, Y. Tuning Oxygen Vacancy Concentration of MnO2 through Metal Doping for Improved Toluene Oxidation. Journal of Hazardous Materials, 2020, 391, 122181. DOI: https://doi.org/10.1016/j.jhazmat.2020.122181.

  17. Cheng, F.; Zhang, T.; Zhang, Y.; Du, J.; Han, X.; Chen, J. Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies. Angew. Chem. Int. Ed, 2013, 52 (9), 2474–2477. DOI: https://doi.org/10.1002/anie.201208582.

  18. Yang, R.; Peng, S.; Lan, B.; Sun, M.; Zhou, Z.; Sun, C.; Gao, Z.; Xing, G.; Yu,L. Oxygen Defect Engineering of Β-MnO2 Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. Small, 2021, 17 (43), 2102408. DOI: https://doi.org/10.1002/smll.202102408.

  19. Wang, Y.; Wu, J.; Wang, G.; Yang, D.; Ishihara, T.; Guo, L. Oxygen Vacancy Engineering in Fe Doped Akhtenskite-Type MnO2 for Low-Temperature Toluene Oxidation. Applied Catalysis B: Environmental, 2021, 285, 119873. DOI: https://doi.org/10.1016/j.apcatb.2020.119873.

  20. Wang, Y.; Liu, K.; Wu, J.; Hu, Z.; Huang, L.; Zhou, J.; Ishihara, T.; Guo, L.Unveiling the Effects of Alkali Metal Ions Intercalated in Layered MnO2 for Formaldehyde Catalytic Oxidation. ACS Catal, 2020, 10 (17), 10021–10031. DOI: https://doi.org/10.1021/acscatal.0c02310.

  21. Ndayiragije, S.; Zhang, Y.; Zhou, Y.; Song, Z.; Wang, N.; Majima, T.; Zhu, L.Mechanochemically Tailoring Oxygen Vacancies of MnO2 for Efficient Degradation of Tetrabromobisphenol A with Peroxymonosulfate. Applied Catalysis B: Environmental, 2022, 307, 121168. DOI: https://doi.org/10.1016/j.apcatb.2022.121168.

  22. Tang, Q.; Jiang, L.; Liu, J.; Wang, S.; Sun, G. Effect of Surface Manganese Valence of Manganese Oxides on the Activity of the Oxygen Reduction Reaction in Alkaline Media.ACS Catal, 2014, 4 (2), 457–463. DOI: https://doi.org/10.1021/cs400938s.

  23. Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.-M.; Tadé, M. O.; Wang, S. Manganese Oxides at the Different Oxidation States for Heterogeneous Activation of Peroxymonosulfate for Phenol Degradation in Aqueous Solutions. Applied Catalysis B: Environmental, 2013, 142–143, 729–735. DOI: https://doi.org/10.1016/j.apcatb.2013.06.004.

  24. Chen, J.; Tang, H.; Huang, M.; Yan, Y.; Zhang, J.; Liu, H.; Zhang, J.; Wang, G.;Wang, R. Surface Lattice Oxygen Activation by Nitrogen-Doped Manganese Dioxide as an Effective and Longevous Catalyst for Indoor HCHO Decomposition. ACS Appl Mater Inter, 2021, 13 (23), 26960–26970. DOI: https://doi.org/10.1021/acsami.1c04369.

  25. Do, S.-B.; Lee, S.-E.; Kim, T.-O. Oxidative Decomposition with PEG-MnO2 Catalyst for Removal of Formaldehyde: Chemical Aspects on HCHO Oxidation Mechanism. Applied Surface Science, 2022, 598, 153773. DOI: https://doi.org/10.1016/j.apsusc.2022.153773

  26. Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Potassium-Modulated δ-MnO2 as Robust Catalysts for Formaldehyde Oxidation at Room Temperature. Applied Catalysis B: Environmental, 2020, 260, 118210. DOI: https://doi.org/10.1016/j.apcatb.2019.118210.

  27. Li, X.; Chen, M.; Li, G.; Wang, P. Constructing MnO2 Alpha/Amorphous Heterophase Junction by Mechanochemically Induced Phase Transformation for Formaldehyde Oxidation. Applied Surface Science, 2022, 589, 152855. DOI: https://doi.org/10.1016/j.apsusc.2022.152855.

  28. Mang, C.; Luo, J.; Cao, P.; Zhang, X.; Rao, M.; Li, G.; Jiang, T. Importance of Water Content in Birnessite-Type MnO2 Catalysts for HCHO Oxidation: Mechanistic Details and DFT Analysis. Chemosphere, 2022, 287, 132293. DOI: https://doi.org/10.1016/j.chemosphere.2021.132293.

  29. Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde.ACS Catal, 2018, 8 (4), 3435–3446. DOI: https://doi.org/10.1021/acscatal.8b00456.

  30. Zhou, L.; Wang, C.; Li, Y.; Liu, X.; Deng, H.; Shan, W.; He, H. The Effect of Hydrogen Reduction of α-MnO2 on Formaldehyde Oxidation: The Roles of Oxygen Vacancies. Chinese Chem Lett, 2022, S1001841722006039. DOI: https://doi.org/10.1016/j.cclet.2022.06.028.

  31. Zhu, L.; Wang, J.; Rong, S.; Wang, H.; Zhang, P. Cerium Modified Birnessite-Type MnO2 for Gaseous Formaldehyde Oxidation at Low Temperature. Applied Catalysis B: Environmental, 2017, 211, 212–221. DOI: https://doi.org/10.1016/j.apcatb.2017.04.025.

  32. He, T.; Shao, D.; Zeng, X.; Rong, S. Harvesting the Vibration Energy of α-MnO2 Nanostructures for Complete Catalytic Oxidation of Carcinogenic Airborne Formaldehyde at Ambient Temperature. Chemosphere, 2020, 261, 127778. DOI: https://doi.org/10.1016/j.chemosphere.2020.127778.

  33. Ye, Z.; Li, T.; Ma, G.; Dong, Y.; Zhou, X. Metal-Ion (Fe, V, Co, and Ni)-Doped MnO2 Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction.Adv. Funct. Mater, 2017, 27 (44), 1704083. DOI: https://doi.org/10.1002/adfm.201704083.

  34. Chu, K.; Liu, Y.; Cheng, Y.; Li, Q. Synergistic Boron-Dopants and Boron-Induced Oxygen Vacancies in MnO2 Nanosheets to Promote Electrocatalytic Nitrogen Reduction. J. Mater. Chem. A, 2020, 8 (10), 5200–5208. DOI: https://doi.org/10.1039/D0TA00220H.

  35. He, T.; Zeng, X.; Rong, S. The Controllable Synthesis of Substitutional and Interstitial Nitrogen-Doped Manganese Dioxide: The Effects of Doping Sites on Enhancing the Catalytic Activity. J. Mater. Chem. A, 2020, 8 (17), 8383–8396. DOI: https://doi.org/10.1039/D0TA01346C.

  36. Wang, J.; Li, J.; Zhang, P.; Zhang, G. Understanding the “Seesaw Effect” of Interlayered K+ with Different Structure in Manganese Oxides for the Enhanced Formaldehyde Oxidation.Applied Catalysis B: Environmental, 2018, 224, 863–870. DOI: https://doi.org/10.1016/j.apcatb.2017.11.019.

  37. Choi, Y.; Lim, D.; Oh, E.; Lim, C.; Baeck, S.-H. Effect of Proton Irradiation on Electrocatalytic Properties of MnO2 for Oxygen Reduction Reaction. J. Mater. Chem. A, 2019, 7 (19), 11659–11664. DOI: https://doi.org/10.1039/C9TA03879E.

  38. Luo, J.; Zhang, Q.; Garcia-Martinez, J.; Suib, S. L. Adsorptive, and Acidic Properties,Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts. J. Am. Chem. Soc, 2008, 130 (10), 3198–3207. DOI: https://doi.org/10.1021/ja077706e.

  39. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni,F.; Harris, K. D. M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev, 2012, 41 (1), 413–447. DOI: https://doi.org/10.1039/C1CS15171A.

  40. Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.;Mo, D.; et al. Highly Efficient Mesoporous MnO2 Catalysts for the Total Toluene Oxidation: Oxygen-Vacancy Defect Engineering and Involved Intermediates Using in Situ DRIFTS. Applied Catalysis B: Environmental, 2020, 264, 118464. DOI: https://doi.org/10.1016/j.apcatb.2019.118464.

  41. Huang, Y.; Liu, Y.; Wang, W.; Chen, M.; Li, H.; Lee, S.; Ho, W.; Huang, T.; Cao,J. Oxygen Vacancy–Engineered δ-MnO/Activated Carbon for Room-Temperature Catalytic Oxidation of Formaldehyde. Applied Catalysis B: Environmental, 2020, 278, 119294. DOI: https://doi.org/10.1016/j.apcatb.2020.119294.

  42. Yan, L.; Shen, C.; Niu, L.; Liu, M.; Lin, J.; Chen, T.; Gong, Y.; Li, C.; Liu,X.; Xu, S. Experimental and Theoretical Investigation of the Effect of Oxygen Vacancies on the Electronic Structure and Pseudocapacitance of MnO 2. ChemSusChem, 2019, 12 (15), 3571–3581. DOI: https://doi.org/10.1002/cssc.201901015.

  43. Liu, F.; Rong, S.; Zhang, P.; Gao, L. One-Step Synthesis of Nanocarbon-Decorated MnO2 with Superior Activity for Indoor Formaldehyde Removal at Room Temperature. Applied Catalysis B: Environmental, 2018, 235, 158–167. DOI: https://doi.org/10.1016/j.apcatb.2018.04.078.

  44. Yi, H.; Wang, Y.; Diao, L.; Xin, Y.; Chai, C.; Cui, D.; Ma, D. Ultrasonic Treatment Enhances the Formation of Oxygen Vacancies and Trivalent Manganese on α-MnO2 Surfaces: Mechanism and Application. Journal of Colloid and Interface Science, 2022, 626, 629–638. DOI: https://doi.org/10.1016/j.jcis.2022.06.144.

  45. Cui, P.; Zhang, Y.; Cao, Z.; Liu, Y.; Sun, Z.; Cheng, S.; Wu, Y.; Fu, J.; Xie,E. Plasma-Assisted Lattice Oxygen Vacancies Engineering Recipe for High-Performing Supercapacitors in a Model of Birnessite-MnO2. Chemical Engineering Journal, 2021, 412, 128676. DOI: https://doi.org/10.1016/j.cej.2021.128676.

  46. Zhou, Y.; Zhou, Z.; Hu, L.; Tian, R.; Wang, Y.; Arandiyan, H.; Chen, F.; Li, M.;Wan, T.; Han, Z.; et al. A Facile Approach to Tailor Electrocatalytic Properties of MnO2 through Tuning Phase Transition, Surface Morphology, and Band Structure. Chemical Engineering Journal, 2022, 438, 135561. DOI: https://doi.org/10.1016/j.cej.2022.135561.

  47. Ye, K.; Li, K.; Lu, Y.; Guo, Z.; Ni, N.; Liu, H.; Huang, Y.; Ji, H.; Wang, P.An Overview of Advanced Methods for the Characterization of Oxygen Vacancies in Materials.TrAC Trends in Analytical Chemistry, 2019, 116, 102–108. DOI: https://doi.org/10.1016/j.trac.2019.05.002.

  48. Jiang, Y.-F.; Jiang, N.; Liang, K.; Yuan, C.-Z.; Fang, X.-X.; Xu, A.-W. A Simple and General Route to Prepare Functional Mesoporous Double-Metal Oxy(Hydroxide). J. Mater. Chem. A, 2019, 7 (13), 7932–7938. DOI: https://doi.org/10.1039/C8TA10719J.

  49. Wang, Y.; Cai, J.; Wu, M.; Chen, J.; Zhao, W.; Tian, Y.; Ding, T.; Zhang, J.;Jiang, Z.; Li, X. Rational Construction of Oxygen Vacancies onto Tungsten Trioxide to Improve Visible Light Photocatalytic Water Oxidation Reaction. Applied Catalysis B: Environmental, 2018, 239, 398–407. DOI: https://doi.org/10.1016/j.apcatb.2018.08.029.

  50. Chen, J.; Chen, X.; Yan, D.; Jiang, M.; Xu, W.; Yu, H.; Jia, H. A Facile Strategy of Enhancing Interaction between Cerium and Manganese Oxides for Catalytic Removal of Gaseous Organic Contaminants. Applied Catalysis B: Environmental, 2019, 250, 396–407. DOI: https://doi.org/10.1016/j.apcatb.2019.03.042.

  51. Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Potassium-Modulated δ-MnO2 as Robust Catalysts for Formaldehyde Oxidation at Room Temperature. Applied Catalysis B: Environmental, 2020, 260, 118210. DOI: https://doi.org/10.1016/j.apcatb.2019.118210.

  52. Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.;Liang, S. Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy‐Density and Durable Aqueous Zinc‐Ion Battery. Adv. Funct. Mater, 2019, 29 (15), 1808375. DOI: https://doi.org/10.1002/adfm.201808375.

  53. Yang, R.; Peng, S.; Lan, B.; Sun, M.; Zhou, Z.; Sun, C.; Gao, Z.; Xing, G.; Yu,L. Oxygen Defect Engineering of Beta-MnO2 Catalysts via Phase Transformation for Selective Catalytic Reduction of NO. Small, 2021, 17 (43), 2102408. DOI: https://doi.org/10.1002/smll.202102408.

Download references

Acknowledgements

This work is supported by the Department of Education of Guangdong Province (2019GZDXM006).

Author information

Authors and Affiliations

Authors

Contributions

YaHui Zhou wrote the main manuscript text and others prepared Figs. 1, 2, 3, 4, 5, 6, 7 and 8. All authors reviewed the manuscript.

Corresponding authors

Correspondence to B. Deng, Y. D. Liu or W. L. Xu.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y.H., Lei, X.X., Zhou, J.Y. et al. Recent Advances in the Regulation of Oxygen Vacancies in MnO2 Nanocatalysts. Catal Surv Asia 27, 319–331 (2023). https://doi.org/10.1007/s10563-023-09402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09402-1

Keywords

Navigation