Skip to main content
Log in

Hydrogen Production by Hydrogen Sulfide Decomposition Using Cobalt Catalysts Doped in SBA-15 Synthetized by EISA Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogen production by H2S catalytic thermal decomposition was studied using Co mesostructured catalysts, directly synthesized by the Evaporation-Induced Self-Assembly method with molar ratios Co/Si of 0.01, 0.05, and 0.10. Cobalt was incorporated into the tetracoordinate silica structure, and lesser amounts of cobalt were left outside the structure in the spinel species of Co3O4. The H2S decomposition reaction was conducted at 400–800 °C under atmospheric pressure and continuous flow. The catalytic activity of catalysts was increased with the rising of temperature, reaching H2 maximum conversions at 800 °C; the conversion at this temperature for 0.01Co–SBA-15 was 28.4%, 0.05Co–SBA-15 was 29.5%, and 38.0% for 0.10Co–SBA-15. All catalysts showed high stability during the reaction without apparent deactivation, and the best activity was for 0.10Co–SBA-15, with a reaction rate of 0.63 mol h−1 g−1 and an energy activation of 51 kJ mol−1. During the reaction, cobalt oxidized phases were transformed into the sulphurated phase CoS by simultaneous reduction and sulphuration processes, which are due to the stream of H2S and the temperature. On the other hand, the sulfur formed was condensed as a yellow solid in the reactor outlet. The results showed that the experimental approach is an efficient alternative for synthesizing Co catalysts under soft conditions, with high activity and stability in H2 and sulfur production using a problematic gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. De Crisci AG, Moniri A, Xu Y (2019) Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy. Int J Hydrog Energy 44(3):1299–1327. https://doi.org/10.1016/j.ijhydene.2018.10.035

    Article  CAS  Google Scholar 

  2. Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: an overview. Int J Hydrog Energy 45(7):3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  3. Singh S, Jain S, Venkateswaran PS, Tiwari AK, Nouni MR, Pandey JK, Goel S (2015) Hydrogen: a sustainable fuel for future of the transport sector. Renew Sustain Energ Rev 51:623–633. https://doi.org/10.1016/j.rser.2015.06.040

    Article  CAS  Google Scholar 

  4. Piéplu A, Saur O, Lavalley JC, Legendre O, Nédez C (1998) Claus catalysis and H2S selective oxidation. Catal Rev 40(4):409–450. https://doi.org/10.1080/01614949808007113

    Article  Google Scholar 

  5. Busca G, Pistarino C (2003) Technologies for the abatement of sulphide compounds from gaseous streams: a comparative overview. J Loss Prev Process Ind 16(5):363–371. https://doi.org/10.1016/S0950-4230(03)00071-8

    Article  Google Scholar 

  6. Skrtic L (2016) Hydrogen sulfide, oil and gas, and people’s health Master´s Degree Thesis California USA: University of California

  7. Powers Schilling WJ (1995) Olfaction: chemical and psychological considerations. In: Proceedings of nuisance concerns in animal management: odor and flies Conference, Gainesville, Florida, pp. 21–22

  8. Chivers T, Hyne JB, Lau C (1980) The thermal decomposition of hydrogen sulfide over transition metal sulfides. Int J Hydrog Energy 5(5):499–506. https://doi.org/10.1016/0360-3199(80)90056-7

    Article  CAS  Google Scholar 

  9. Chivers T, Lau C (1987) The thermal decomposition of hydrogen sulfide over vanadium and molybdenum sulfides and mixed sulfide catalysts in quartz and thermal diffusion column reactors. Int J Hydrog Energy 12(4):235–243. https://doi.org/10.1016/0360-3199(87)90027-9

    Article  CAS  Google Scholar 

  10. Reshetenko TV, Khairulin SR, Ismagilov ZR, Kuznetsov VV (2002) Study of the reaction of high-temperature H2S decomposition on metal oxides (γ-Al2O3, α-Fe2O3, V2O5). Int J Hydrogen Energy 27(4):387–394. https://doi.org/10.1016/S0360-3199(01)00143-4

    Article  CAS  Google Scholar 

  11. Kraia T, Kaklidis N, Konsolakis M, Marnellos GE (2019) Hydrogen production by H2S decomposition over ceria supported transition metal (Co, Ni, Fe and Cu) catalysts. Int J Hydrog Energy 44(20):9753–9762. https://doi.org/10.1016/j.ijhydene.2018.12.070

    Article  CAS  Google Scholar 

  12. Burra KRG, Bassioni G, Gupta AK (2018) Catalytic transformation of H2S for H2 production. Int J Hydrog Energy 43(51):22852–22860. https://doi.org/10.1016/j.ijhydene.2018.10.164

    Article  CAS  Google Scholar 

  13. Guldal NO, Figen HE, Baykara SZ (2015) New catalysts for hydrogen production from H2S: preliminary results. Int J Hydrog Energy 40(24):7452–7458. https://doi.org/10.1016/j.ijhydene.2015.02.107

    Article  CAS  Google Scholar 

  14. Guldal NO, Figen HE, Baykara SZ (2017) Production of hydrogen from hydrogen sulfide with perovskite type catalysts: LaMO3. Chem Eng J 313:1354–1363. https://doi.org/10.1016/j.cej.2016.11.057

    Article  CAS  Google Scholar 

  15. Guldal NO, Figen HE, Baykara SZ (2018) Perovskite catalysts for hydrogen production from hydrogen sulfide. Int J Hydrog Energy 43(2):1038–1046. https://doi.org/10.1016/j.ijhydene.2017.10.156

    Article  CAS  Google Scholar 

  16. Kwok KM, Ong SWD, Chen L, Zeng HC (2018) Constrained growth of MoS2 nanosheets within a mesoporous silica shell and its effects on defect sites and catalyst stability for H2S decomposition. ACS Catal 8(1):714–724. https://doi.org/10.1021/acscatal.7b03123

    Article  CAS  Google Scholar 

  17. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  18. Gómez-Cazalilla M, Mérida-Robles JM, Gurbani A, Rodríguez-Castellón E, Jiménez-López A (2007) Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica. J Solid State Chem 180(3):1130–1140. https://doi.org/10.1016/j.jssc.2006.12.038

    Article  ADS  CAS  Google Scholar 

  19. Zhang TM, Li DY, Liu W (2017) Catalytic activity of Fe-SBA-15 prepared by evaporation-induced self-assembly (EISA) method. Mater Sci Forum 898:1916–1922. https://doi.org/10.4028/www.scientific.net/MSF.898.1916

    Article  Google Scholar 

  20. Aguilar García E, Cruz MS, Madeira HY, Huesca RH, Cruz MP (2021) Synthesis of Fe catalysts doped in SBA-15 by EISA method: characterization and catalytic studies in 2-propanol decomposition. Kinet Catal 62(Suppl 1):S38–S47. https://doi.org/10.1134/S0023158421080036

    Article  Google Scholar 

  21. Wang Y, Ren J, Liu X, Wang Y, Guo Y, Lu G (2008) Facile synthesis of ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites with diverse mesostructures. J Colloid Interface Sci 326(1):158–165. https://doi.org/10.1016/j.jcis.2008.07.012

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Wang J, Liu Q (2008) A simple method to directly synthesize Al-SBA-15 mesoporous materials with different Al contents. Solid State Commun 148(11–12):529–533. https://doi.org/10.1016/j.ssc.2008.09.052

    Article  ADS  CAS  Google Scholar 

  23. Wang J, Liu Q, Liu Q (2007) Synthesis and characterization of Sn or Al-containing SBA-15 mesoporous materials without mineral acids added. Microporous Mesoporous Mater 102(1–3):51–57. https://doi.org/10.1016/j.micromeso.2006.12.040

    Article  CAS  Google Scholar 

  24. Zhang H, Tang C, Lv Y, Sun C, Gao F, Dong L, Chen Y (2012) Synthesis, characterization, and catalytic performance of copper-containing SBA-15 in the phenol hydroxylation. J Colloid Interface Sci 380(1):16–24. https://doi.org/10.1016/j.jcis.2012.04.059

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Su H, Bai S, Bing L, Deng H, Zhuang Y, Sun J (2023) Fabrication of small-sized ZIF-8 confined in the mesoporous SBA-15 with synergistic enhancement for CO2 fixation with epoxides. Catal Lett 153(5):1410–1422. https://doi.org/10.1007/s10562-022-03995-4

    Article  CAS  Google Scholar 

  26. Luo X, Tian A, Ren Z, Kong H, Wang L (2022) Study on the bimetallic synergistic effect of Cu/Al@ SBA-15 nanocomposite on dehydrogenation coupling strategy. Catal Lett 152(12):3704–3715. https://doi.org/10.1007/s10562-022-03929-0

    Article  CAS  Google Scholar 

  27. Kamaruzaman MF, Taufiq-Yap YH, Derawi D (2020) Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass Bioenergy 134:105476. https://doi.org/10.1016/j.biombioe.2020.105476

    Article  CAS  Google Scholar 

  28. Charan PHK, Rao GR (2015) Textural and morphological studies of transition metal doped SBA-15 by co-condensation method. J Chem Sci 127(5):909–919. https://doi.org/10.1007/s12039-015-0847-5

    Article  CAS  Google Scholar 

  29. Xu S, Xing X, Wu H, Shi X, Zhang Z, Gao H (2022) The hydrothermally stable NbW-SBA-15 as highly efficient catalysts for the conversion of glucose into 5 hydroxymethylfurfural. Catal Lett 152:3427–3436. https://doi.org/10.1007/s10562-021-03897-x

    Article  CAS  Google Scholar 

  30. Xia F, Ou E, Wang L, Wang J (2008) Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes Pigm 76(1):76–81. https://doi.org/10.1016/j.dyepig.2006.08.008

    Article  CAS  Google Scholar 

  31. Yadav R, Muralidhar A, Shamna A, Aghila P, Gurrala L, Sakthivel A (2018) Aluminium oxide supported on SBA-15 molecular sieves as potential Lewis acid catalysts for epoxide ring opening using aniline. Catal Lett 148:1407–1415. https://doi.org/10.1007/s10562-018-2366-8

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  33. Castro-Campoy DA, Vargas-Hernández D, Sánchez-Cruz M, Hernández-Huesca R (2023) Photodegradation of acetaminophen and ibuprofen in iron supported in SBA-15 under UV irradiation. J Photochem Photobiol A 441:114716. https://doi.org/10.1016/j.jphotochem.2023.114716

    Article  CAS  Google Scholar 

  34. Grosso D, Cagnol F, Soler-Illia GDA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14(4):309–322. https://doi.org/10.1002/adfm.200305036

    Article  CAS  Google Scholar 

  35. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11(7):579–585. https://doi.org/10.1002/(SICI)1521-4095(199905)11:7%3c579::AID-ADMA579%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  36. Cui H, Zhang Y, Qiu Z, Zhao L, Zhu Y (2010) Synthesis and characterization of cobalt-substituted SBA-15 and its high activity in epoxidation of styrene with molecular oxygen. Appl Catal B 101(1–2):45–53. https://doi.org/10.1016/j.apcatb.2010.09.003

    Article  CAS  Google Scholar 

  37. Lou Z, Wang R, Sun H, Chen Y, Yang Y (2008) Direct synthesis of highly ordered Co–SBA-15 mesoporous materials by the pH-adjusting approach. Microporous Mesoporous Mater 110(2–3):347–354. https://doi.org/10.1016/j.micromeso.2007.06.020

    Article  CAS  Google Scholar 

  38. Tsoncheva T, Ivanova L, Rosenholm J, Linden M (2009) Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Appl Catal B 89(3–4):365–374. https://doi.org/10.1016/j.apcatb.2008.12.015

    Article  CAS  Google Scholar 

  39. Xiong H, Zhang Y, Liew K, Li J (2009) Ruthenium promotion of Co/SBA-15 catalysts with high cobalt loading for Fischer–Tropsch synthesis. Fuel Process Technol 90(2):237–246. https://doi.org/10.1016/j.fuproc.2008.08.014

    Article  CAS  Google Scholar 

  40. Martı́nez A, López C, Márquez F, Dı́az I (2003) Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. J Catal 220(2):486–499. https://doi.org/10.1016/S0021-9517(03)00289-6

    Article  CAS  Google Scholar 

  41. Jia L, Jia L, Li D, Hou B, Wang J, Sun Y (2011) Silylated Co/SBA-15 catalysts for Fischer–Tropsch synthesis. J Solid State Chem 184(3):488–493. https://doi.org/10.1016/j.jssc.2010.10.002

    Article  ADS  CAS  Google Scholar 

  42. Wang L, Yang J, Mu R, Guo Y, Hou H (2021) Sol-gel processed cobalt-doped methylated silica membranes calcined under N2 atmosphere: microstructure and hydrogen perm-selectivity. Materials 14(15):4188. https://doi.org/10.3390/ma14154188

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu SJ, Lin SS, Zheng Y, Shen P, Chen SY (2016) Laser ablation synthesis of C–Si–H-doped Co1xO with novel (hkl)-specific paracrystal, Co interlayer, and lattice shuffling. Appl Phys A 122:1–13. https://doi.org/10.1007/s00339-016-9813-4

    Article  CAS  Google Scholar 

  44. Hwang IY, Kim JH, Oh SK, Kang HJ, Lee YS (2003) Ultrathin cobalt silicide film formation on Si (100). Surf Interface Anal 35(2):184–187. https://doi.org/10.1002/sia.1517

    Article  CAS  Google Scholar 

  45. Sharma A, Tripathi S, Shripathi T (2009) X-ray photoelectron study of annealed Co thin film on Si surface. Appl Surf Sci 256(2):530–535. https://doi.org/10.1016/j.apsusc.2009.08.007

    Article  ADS  CAS  Google Scholar 

  46. Viswanathan S, Narayanan B, Yaakob Z, Periyat P, Padikkaparambil S (2014) Selective formation of aniline over nanogold incorporated cobalt loaded SBA 15 catalysts. J Porous Mater 21:251–262. https://doi.org/10.1007/s10934-013-9770-7

    Article  CAS  Google Scholar 

  47. Fang YT, Liu T, Zhang ZC, Gao XN (2014) Silica gel adsorbents doped with Al, Ti, and Co ions improved adsorption capacity, thermal stability, and aging resistance. Renew Energy 63:755–761. https://doi.org/10.1016/j.renene.2013.10.034

    Article  CAS  Google Scholar 

  48. Stadnichenko AI, Koshcheev SV, Boronin AI (2007) Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Mosc Univ Chem Bull 62:343–349. https://doi.org/10.3103/S0027131407060090

    Article  Google Scholar 

  49. Faraji F, Safarik I, Strausz OP, Yildirim E, Torres ME (1998) The direct conversion of hydrogen sulfide to hydrogen and sulfur. Int J Hydrog Energy 23(6):451–456. https://doi.org/10.1016/S0360-3199(97)00099-2

    Article  CAS  Google Scholar 

  50. Barba D, Cammarota F, Vaiano V, Salzano E, Palma V (2017) Experimental and numerical analysis of the oxidative decomposition of H2S. Fuel 198:68–75. https://doi.org/10.1016/j.fuel.2016.12.038

    Article  CAS  Google Scholar 

  51. Kaloidas VE, Papayannakos NG (1987) Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/Si, (i = 1,…,8) in the gas phase. Int J Hydrog Energy 12(6):403–409. https://doi.org/10.1016/0360-3199(87)90159-5

    Article  CAS  Google Scholar 

  52. Bishara A, Salman OA, Khraishi N, Marafi A (1987) Thermochemical decomposition of hydrogen sulfide by solar energy. Int J Hydrog Energy 12(10):679–685. https://doi.org/10.1016/0360-3199(87)90130-3

    Article  CAS  Google Scholar 

  53. Coulier L, Kishan G, Van Veen JAR, Niemantsverdriet JW (2002) Influence of support-interaction on the sulfidation behavior and hydrodesulfurization activity of Al2O3-supported W, CoW, and NiW model catalysts. J Phys Chem B 106(23):5897–5906. https://doi.org/10.1021/jp0136821

    Article  CAS  Google Scholar 

  54. Pashigreva AV, Bukhtiyarova GA, Klimov OV, Chesalov YA, Litvak GS, Noskov AS (2010) Activity and sulfidation behavior of the CoMo/Al2O3 hydrotreating catalyst: the effect of drying conditions. Catal Today 149(1–2):19–27. https://doi.org/10.1016/j.cattod.2009.07.096

    Article  CAS  Google Scholar 

  55. Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Catal Today 86(1–4):5–16. https://doi.org/10.1016/S0920-5861(03)00400-0

    Article  CAS  Google Scholar 

  56. Zdražil M (1988) Recent advances in catalysis over sulphides. Catal Today 3(4):269–365. https://doi.org/10.1016/0920-5861(88)87051-2

    Article  Google Scholar 

  57. Ma D, Hu B, Wu W, Liu X, Zai J, Shu C, Liu TL (2019) Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat Commun 10(1):3367. https://doi.org/10.1038/s41467-019-11176-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao F, Zhao YQ, Zhang GQ, Li HL (2007) Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun 9(6):1282–1287. https://doi.org/10.1016/j.elecom.2006.11.022

    Article  CAS  Google Scholar 

  59. Huirache-Acuña R, Pawelec B, Rivera-Muñoz E, Nava R, Espino J, Fierro JLG (2009) Comparison of the morphology and HDS activity of ternary Co–Mo–W catalysts supported on P-modified SBA-15 and SBA-16 substrates. Appl Catal B Environ 92(1–2):168–184. https://doi.org/10.1016/j.apcatb.2009.07.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Antonio Morales Espino from LAREC-IFUNAM for his support in the characterization by X-ray diffraction, Heriberto Pfeiffer Perea from Instituto de Investigaciones en Materiales from UNAM for the support in the studies of N2 adsorption, and Consejo Nacional de Humanidades, Ciencia y Tecnología–Mexico, for the postdoctoral scholarship awarded.

Author information

Authors and Affiliations

Authors

Contributions

The contributions to the study conception and design were performed by RHH, MAPC, and HYM. EAG, MSC, SCL, and ERR performed material preparation and data collection. The data analysis was performed by EAG, DRA, and HYM. EAG wrote the first version of the manuscript, and all authors commented on previous versions. All Authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Aguilar-García.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2708 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-García, E., Pérez-Cruz, M.A., Sánchez-Cruz, M. et al. Hydrogen Production by Hydrogen Sulfide Decomposition Using Cobalt Catalysts Doped in SBA-15 Synthetized by EISA Method. Catal Lett (2024). https://doi.org/10.1007/s10562-023-04515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04515-8

Keywords

Navigation