Skip to main content
Log in

Novel, Robust and Efficient W/Co@g-C3N4 Catalyst Enable Outstanding Performance for the Straightforward Oxidative Amidation of Aldehydes with Amines

  • Original Manuscript
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A comprehensive vision has been promoted for straightforward oxidative amidation, deploying a majority of amines and aldehydes via a robust and novel nano-catalyst of W/Co@g-C3N4. This approach would yield the primary, secondary, and tertiary amides with excellent efficiency experiencing mild conditions, in which the environmentally benign oxidizing agent of TBHP was predominantly used, holding remarkable attributes such as cost-effectiveness as well as facile approachability. More specifically, simultaneously embedding of W and Co on the surface of g-C3N4 has been an integral part in effectually progressing direct operation of amidation reaction in comparison with pure g-C3N4. The most important point highlighted in this work is the productive contribution of materials choice in designing as well as manufacturing approaches with respect to new required products while giving the most extreme level of accessible quality and efficiency with the most reduced level of costs. Emphatically, a variety of extraordinary merits can be awarded to this as-prepared catalyst, such as notable activity, reasonable recyclability, sustainable nature, and easy work-up. Moreover, a simple process was conducted to synthesize W/Co@g-C3N4 evaluated by employing FT-IR, XRD, SEM, EDX, and TGA.

Graphical Abstract

Highlights

  • Nano-W/Co@g-C3N4 was introduced for the first time as a robust and efficient catalyst.

  • Employing of tungsten and cobalt revealed a considerable shift in the catalytic performance of g-C3N4.

  • Short reaction time as well as high yield with respect to the reported literatures for formation of amide bond through direct oxidative amidation.

  • W/Co@g-C3N4 could be used in five consecutive runs without any significant drop in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh F-K, Wu KC-W (2020) Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 416:213319. https://doi.org/10.1016/j.ccr.2020.213319

    Article  CAS  Google Scholar 

  2. Murugesan K, Beller M, Jagadeesh RV (2019) Reusable nickel nanoparticles-catalyzed reductive amination for selective synthesis of primary amines. Angew Chem 131(15):5118–5122. https://doi.org/10.1002/ange.201812100

    Article  Google Scholar 

  3. Wang S, Wang Z, Zha Z (2009) Metal nanoparticles or metal oxide nanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis. Dalton Trans 43:9363–9373. https://doi.org/10.1039/B913539A

    Article  Google Scholar 

  4. Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480(7378):471–479. https://doi.org/10.1038/nature10702

    Article  CAS  PubMed  Google Scholar 

  5. Humphrey JM, Chamberlin AR (1997) Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem Rev 97(6):2243–2266. https://doi.org/10.1021/cr950005s

    Article  CAS  PubMed  Google Scholar 

  6. Chan W-K, Ho C-M, Wong M-K, Che C-M (2006) Oxidative amide synthesis and n-terminal α-amino group ligation of peptides in aqueous medium. J Am Chem Soc 128(46):14796–14797. https://doi.org/10.1021/ja064479s

    Article  CAS  PubMed  Google Scholar 

  7. Fang X, Li H, Jackstell R, Beller M (2014) Selective palladium-catalyzed aminocarbonylation of 1, 3-dienes: Atom-efficient synthesis of β, γ-unsaturated amides. J Am Chem Soc 136(45):16039–16043. https://doi.org/10.1021/ja507530f

    Article  CAS  PubMed  Google Scholar 

  8. Sabatini MT, Boulton L, Sneddon HF, Sheppard TD (2019) A green chemistry perspective on catalytic amide bond formation. Nat Catal 2(1):10–17. https://doi.org/10.1038/s41929-018-0211-5

    Article  CAS  Google Scholar 

  9. Hollanders K, Maes BU, Ballet S (2019) A new wave of amide bond formations for peptide synthesis. Synthesis 51(11):2261–2277. https://doi.org/10.1055/s-0037-1611773

    Article  CAS  Google Scholar 

  10. Greenberg A, Breneman CM, Liebman JF (2000) The amide linkage: Structural significance in chemistry, biochemistry, and materials science. John Wiley & Sons

    Google Scholar 

  11. Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A (2007) Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem 9(5):411–420. https://doi.org/10.1039/B703488C

    Article  CAS  Google Scholar 

  12. Shen B, Makley DM, Johnston JN (2010) Umpolung reactivity in amide and peptide synthesis. Nature 465(7301):1027–1032. https://doi.org/10.1038/nature09125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68. https://doi.org/10.1021/cc9800071

    Article  CAS  PubMed  Google Scholar 

  14. Valeur E, Bradley M (2009) Amide bond formation: Beyond the myth of coupling reagents. Chem Soc Rev 38(2):606–631. https://doi.org/10.1039/B701677H

    Article  CAS  PubMed  Google Scholar 

  15. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protocols 2(12):3247–3256. https://doi.org/10.1038/nprot.2007.454

    Article  CAS  PubMed  Google Scholar 

  16. Allen CL, Williams JM (2011) Metal-catalysed approaches to amide bond formation. Cheml Soc Rev 40(7):3405–3415. https://doi.org/10.1039/C0CS00196A

    Article  CAS  Google Scholar 

  17. Montalbetti CA, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61(46):10827–10852. https://doi.org/10.1016/j.tet.2005.08.031

    Article  CAS  Google Scholar 

  18. Al-Zoubi RM, Marion O, Hall DG (2008) Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew Chem Int Ed 47(15):2876–2879. https://doi.org/10.1002/anie.200705468

    Article  CAS  Google Scholar 

  19. Teichert A, Jantos K, Harms K, Studer A (2004) One-pot homolytic aromatic substitutions/hwe olefinations under microwave conditions for the formation of a small oxindole library. Org Lett 6(20):3477–3480. https://doi.org/10.1021/ol048759t

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Hong SH (2011) Oxidative amide synthesis directly from alcohols with amines. Org Biomol Chem 9(1):20–26. https://doi.org/10.1039/C0OB00342E

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Zhang C, Zhang Z, Wen X, Dou X, Wei J, Qiu X, Song S, Jiao N (2020) Nitromethane as a nitrogen donor in schmidt-type formation of amides and nitriles. Science 367(6475):281–285. https://doi.org/10.1126/science.aay9501

    Article  CAS  PubMed  Google Scholar 

  22. Jiang D, He T, Ma L, Wang Z (2014) Recent developments in ritter reaction. RSC Adv 4(110):64936–64946. https://doi.org/10.1039/C4RA10784E

    Article  CAS  Google Scholar 

  23. Chandgude AL, Dömling A (2017) N-hydroxyimide ugi reaction toward α-hydrazino amides. Org Lett 19(5):1228–1231. https://doi.org/10.1021/acs.orglett.7b00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Owston NA, Parker AJ, Williams JM (2007) Highly efficient ruthenium-catalyzed oxime to amide rearrangement. Org Lett 9(18):3599–3601. https://doi.org/10.1021/ol701445n

    Article  CAS  PubMed  Google Scholar 

  25. Gololobov YG, Kasukhin LF (1992) Recent advances in the staudinger reaction. Tetrahedron 48(8):1353–1406. https://doi.org/10.1016/S0040-4020(01)92229-X

    Article  CAS  Google Scholar 

  26. Cho SH, Yoo EJ, Bae I, Chang S (2005) Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. J Am Chem Soc 127(46):16046–16047. https://doi.org/10.1021/ja056399e

    Article  CAS  PubMed  Google Scholar 

  27. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779. https://doi.org/10.1126/science.7973629

    Article  CAS  PubMed  Google Scholar 

  28. Shangguan N, Katukojvala S, Greenberg R, Williams LJ (2003) The reaction of thio acids with azides: a new mechanism and new synthetic applications. J Am Chem Soc 125(26):7754–7755. https://doi.org/10.1021/ja0294919

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z-W, Jiang H-F, Pan X-Y, He Z-J (2011) Practical synthesis of amides from alkynyl bromides, amines, and water. Tetrahedron 67(33):5920–5927. https://doi.org/10.1016/j.tet.2011.06.045

    Article  CAS  Google Scholar 

  30. Eldred SE, Stone DA, Gellman SH, Stahl SS (2003) Catalytic transamidation under moderate conditions. J Am Chem Soc 125(12):3422–3423. https://doi.org/10.1021/ja028242h

    Article  CAS  PubMed  Google Scholar 

  31. Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) Progress in hydroformylation and carbonylation. J Mol Catal A: Chem 104(1):17–85. https://doi.org/10.1016/1381-1169(95)00130-1

    Article  CAS  Google Scholar 

  32. Knapton DJ, Meyer TY (2004) The regio-and stereoselective one-pot catalytic preparation of β-selenyl acrylamides. Org Lett 6(5):687–689. https://doi.org/10.1021/ol036305a

    Article  CAS  PubMed  Google Scholar 

  33. Uozumi Y, Arii T, Watanabe T (2001) Double carbonylation of aryl iodides with primary amines under atmospheric pressure conditions using the Pd/PPh3/DABCO/THF system. J Org Chem 66(15):5272–5274. https://doi.org/10.1021/jo0156924

    Article  CAS  PubMed  Google Scholar 

  34. Nanayakkara P, Alper H (2003) Asymmetric synthesis of α-aminoamides by Pd-catalyzed double carbohydroamination. Chem Commun 18:2384–2385. https://doi.org/10.1039/B306879J

    Article  Google Scholar 

  35. Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317(5839):790–792. https://doi.org/10.1126/science.1145295

    Article  CAS  PubMed  Google Scholar 

  36. García-Álvarez R, Crochet P, Cadierno V (2013) Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: Nitrile hydrations and beyond. Green chem 15(1):46–66. https://doi.org/10.1039/C2GC36534K

    Article  Google Scholar 

  37. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312. https://doi.org/10.1039/B918763B

    Article  CAS  PubMed  Google Scholar 

  38. Tamaru Y, Yamada Y (1983) Yoshida Z-i (1983) Direct oxidative transformation of aldehydes to amides by palladium catalysis. Synthesis 06:474–476. https://doi.org/10.1055/s-1983-30388

    Article  Google Scholar 

  39. Li Y, Jia F, Li Z (2013) Iron-catalyzed oxidative amidation of tertiary amines with aldehydes. Chem - Eur J 19(1):82–86. https://doi.org/10.1002/chem.201203824

    Article  CAS  PubMed  Google Scholar 

  40. Tank R, Pathak U, Vimal M, Bhattacharyya S, Pandey LK (2011) Hydrogen peroxide mediated efficient amidation and esterification of aldehydes: Scope and selectivity. Green Chem 13(12):3350–3354. https://doi.org/10.1039/C1GC16041A

    Article  CAS  Google Scholar 

  41. Vora HU, Rovis T (2007) Nucleophilic carbene and hoat relay catalysis in an amide bond coupling: An orthogonal peptide bond forming reaction. J Am Chem Soc 129(45):13796–13797. https://doi.org/10.1021/ja0764052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leow D (2014) Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org Lett 16(21):5812–5815. https://doi.org/10.1021/ol5029354

    Article  CAS  PubMed  Google Scholar 

  43. Nordstrøm LU, Vogt H, Madsen R (2008) Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J Am Chem Soc 130(52):17672–17673. https://doi.org/10.1021/ja808129p

    Article  CAS  PubMed  Google Scholar 

  44. Mak XY, Ciccolini RP, Robinson JM, Tester JW, Danheiser RL (2009) Synthesis of amides and lactams in supercritical carbon dioxide. J Org Chem 74(24):9381–9387. https://doi.org/10.1021/jo9021875

    Article  CAS  PubMed  Google Scholar 

  45. Gnanaprakasam B, Milstein D (2011) Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J Am Chem Soc 133(6):1682–1685. https://doi.org/10.1021/ja109944n

    Article  CAS  PubMed  Google Scholar 

  46. Han C, Lee JP, Lobkovsky E, Porco JA (2005) Catalytic ester− amide exchange using group (IV) metal alkoxide− activator complexes. J Am Chem Soc 127(28):10039–10044. https://doi.org/10.1021/ja0527976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Ma L, Jia F, Li Z (2013) Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides. J Org Chem 78(11):5638–5646. https://doi.org/10.1021/jo400804p

    Article  CAS  PubMed  Google Scholar 

  48. Yoo W-J, Li C-J (2006) Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J Am Chem Soc 128(40):13064–13065. https://doi.org/10.1021/ja064315b

    Article  CAS  PubMed  Google Scholar 

  49. Reddy KR, Maheswari CU, Venkateshwar M, Kantam ML (2008) Oxidative amidation of aldehydes and alcohols with primary amines catalyzed by KI-TBHP. Eur J Org Chem Wiley Online Library 14:3619–3622. https://doi.org/10.1002/ejoc.200800454

    Article  CAS  Google Scholar 

  50. Nakagawa K, Onoue H, Minami K (1966) Oxidation with nickel peroxide. A new synthesis of amides from aldehydes or alcohols. Chem Commun (London) 1:17–18. https://doi.org/10.1039/C19660000017

    Article  Google Scholar 

  51. Nakagawa K, Mineo S, Kawamura S, Horikawa M, Tokumoto T, Mori O (1979) Oxidation with nickel peroxide. Xii. Synthesis of nitriles from aldehydes. Synth Commun 9(6):529–534. https://doi.org/10.1080/00397917908060956

    Article  CAS  Google Scholar 

  52. Marko IE, Mekhalfia A (1990) Radical mediated oxidations in organic chemistry. 3. An efficient and versatile transformation of aldehydes into amides¥. Tetrahedron Lett 31(49):7237–7240. https://doi.org/10.1016/S0040-4039(00)97289-7

    Article  CAS  Google Scholar 

  53. Shie J-J, Fang J-M (2003) Direct conversion of aldehydes to amides, tetrazoles, and triazines in aqueous media by one-pot tandem reactions. J Org Chem 68(3):1158–1160. https://doi.org/10.1021/jo026407z

    Article  CAS  PubMed  Google Scholar 

  54. Gilman NW (1971) The preparation of carboxylic amides from aldehydes by oxidation. J Chem Soc D Chem Commun 14:733–734. https://doi.org/10.1039/C29710000733

    Article  Google Scholar 

  55. De Sarkar S, Studer A (2010) Oxidative amidation and azidation of aldehydes by nhc catalysis. Org Lett 12(9):1992–1995. https://doi.org/10.1021/ol1004643

    Article  CAS  PubMed  Google Scholar 

  56. Ekoue-Kovi K, Wolf C (2007) Metal-free one-pot oxidative amination of aldehydes to amides. Org Lett 9(17):3429–3432. https://doi.org/10.1021/ol7014626

    Article  CAS  PubMed  Google Scholar 

  57. Ekoue-Kovi K, Wolf C (2008) One-pot oxidative esterification and amidation of aldehydes. Chem A-Eur J 14(21):6302–6315. https://doi.org/10.1002/chem.200800353

    Article  Google Scholar 

  58. Oldenhuis NJ, Dong VM, Guan Z (2014) Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed construction of amides and imines. Tetrahedron 70(27–28):4213–4218. https://doi.org/10.1016/j.tet.2014.03.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watson AJ, Maxwell AC, Williams JM (2009) Ruthenium-catalyzed oxidation of alcohols into amides. Org Lett 11(12):2667–2670. https://doi.org/10.1021/ol900723v

    Article  CAS  PubMed  Google Scholar 

  60. Soulé J-F, Miyamura H, Kobayashi S (2011) Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron,-nickel or-cobalt nanoparticles. J Am Chem Soc 133(46):18550–18553. https://doi.org/10.1021/ja2080086

    Article  CAS  PubMed  Google Scholar 

  61. Owston NA, Parker AJ, Williams JM (2007) Iridium-catalyzed conversion of alcohols into amides via oximes. Org Lett 9(1):73–75. https://doi.org/10.1021/ol062549u

    Article  CAS  PubMed  Google Scholar 

  62. Krabbe SW, Chan VS, Franczyk TS, Shekhar S, Napolitano JG, Presto CA, Simanis JA (2016) Copper-catalyzed aerobic oxidative amidation of benzyl alcohols. J Org Chem 81(22):10688–10697. https://doi.org/10.1021/acs.joc.6b01686

    Article  CAS  PubMed  Google Scholar 

  63. Duan S, Han G, Su Y, Zhang X, Liu Y, Wu X, Li B (2016) Magnetic Co@g-C3N4 core–shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation. Langmuir 32(25):6272–6281. https://doi.org/10.1021/acs.langmuir.6b01248

    Article  CAS  PubMed  Google Scholar 

  64. Kumar A, Xu Q (2018) Two-dimensional layered materials as catalyst supports. ChemNanoMat 4(1):28–40. https://doi.org/10.1002/cnma.201700139

    Article  CAS  Google Scholar 

  65. Lakhi KS, Park D-H, Al-Bahily K, Cha W, Viswanathan B, Choy J-H, Vinu A (2017) Mesoporous carbon nitrides: Synthesis, functionalization, and applications. Chem Soc Rev 46(1):72–101. https://doi.org/10.1039/C6CS00532B

    Article  CAS  PubMed  Google Scholar 

  66. Inagaki M, Tsumura T, Kinumoto T, Toyoda M (2019) Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 141:580–607. https://doi.org/10.1016/j.carbon.2018.09.082

    Article  CAS  Google Scholar 

  67. Verma F, Shukla P, Bhardiya SR, Singh M, Rai A, Rai VK (2019) Visible light-induced direct conversion of aldehydes into nitriles in aqueous medium using Co@g-C3N4 as photocatalyst. Catal Commun 119:76–81. https://doi.org/10.1016/j.catcom.2018.10.031

    Article  CAS  Google Scholar 

  68. Patel SB, Vasava DV (2020) Synthesis and characterization of Ag@g−C3N4 and its photocatalytic evolution in visible light driven synthesis of ynone. ChemCatChem 12(2):631–641. https://doi.org/10.1002/cctc.201901802

    Article  CAS  Google Scholar 

  69. Oh W-D, Chang VW, Hu Z-T, Goei R, Lim T-T (2017) Enhancing the catalytic activity of g-C3N4 through me doping (Me= Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem Eng J 323:260–269. https://doi.org/10.1016/j.cej.2017.04.107

    Article  CAS  Google Scholar 

  70. Hosseini S, Amoozadeh A (2021) An efficient and robust method for selective conversion of aniline to azobenzene using nano-TiO2-P25-SO3H, under visible light irradiation. Photochem Photobiol 97(2):278–288. https://doi.org/10.1111/php.13328

    Article  CAS  PubMed  Google Scholar 

  71. Li G, Yang N, Wang W, Zhang W (2009) Synthesis, photophysical and photocatalytic properties of N-doped sodium niobate sensitized by carbon nitride. J Phys Chem C 113(33):14829–14833. https://doi.org/10.1021/jp905559m

    Article  CAS  Google Scholar 

  72. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G (2009) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A 94(2):387–392. https://doi.org/10.1007/s00339-008-4816-4

    Article  CAS  Google Scholar 

  73. Xu Y, Xu H, Wang L, Yan J, Li H, Song Y, Huang L, Cai G (2013) The cnt modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans 42(21):7604–7613. https://doi.org/10.1039/C3DT32871F

    Article  CAS  PubMed  Google Scholar 

  74. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng H-M (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648. https://doi.org/10.1021/ja103798k

    Article  CAS  PubMed  Google Scholar 

  75. Verma S, Baig RN, Nadagouda MN, Varma RS (2018) Photocatalytic CH activation and oxidative esterification using Pd@g-C3N4. Catal Today 309:248–252. https://doi.org/10.1016/j.cattod.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hosseini S, Amoozadeh A (2020) An efficient and robust method for selective conversion of aniline to azobenzene using nano-TiO2-P25-SO3H, under visible light irradiation. Photochem Photobiol 97(2):278–288. https://doi.org/10.1111/php.13328

    Article  CAS  PubMed  Google Scholar 

  77. Hosseini S, Amoozadeh A, Akbarzadeh Y (2019) Nano-WO3-SO3H as a new photocatalyst insight through covalently grafted brønsted acid: Highly efficient selective oxidation of benzyl alcohols to aldehydes. Photochem Photobiol 95(6):1320–1330. https://doi.org/10.1111/php.13142

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Wu Q, Du Z, Zheng Y, Li Q (2018) Green synthesis of g-C3N4-Pt catalyst and application to photocatalytic hydrogen evolution from water splitting. Fuller Nanotub Carbon Nanostructures 26(10):688–695. https://doi.org/10.1080/1536383X.2018.1469006

    Article  CAS  Google Scholar 

  79. Kaur M, Pal K (2021) Synthesis, characterization and electrochemical evaluation of hydrogen storage capacity of graphitic carbon nitride and its nanocomposites in an alkaline environment. J Mater Sci Mater Electron 32(9):12475–12489. https://doi.org/10.1007/s10854-021-05882-x

    Article  CAS  Google Scholar 

  80. Hosseini S, Amoozadeh A (2018) Nano-TiO2-P25-SO3H as a new and robust photo-catalyst: The acceleration effect of selective oxidation of aromatic alcohols to aldehydes under blue led irradiation. J Photochem Photobiol A: Chem 364:516–523. https://doi.org/10.1016/j.jphotochem.2018.06.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Chemistry and Chemical Engineering Research Center of Iran for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saber Hosseini or Najmedin Azizi.

Ethics declarations

Conflict of Interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S., Azizi, N. Novel, Robust and Efficient W/Co@g-C3N4 Catalyst Enable Outstanding Performance for the Straightforward Oxidative Amidation of Aldehydes with Amines. Catal Lett (2023). https://doi.org/10.1007/s10562-023-04508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-023-04508-7

Keywords

Navigation