Skip to main content
Log in

Hydrogenation of Guaiacol and Pyrolysis of Biomass Using Nickel and Niobium-Based Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrogenation reaction of guaiacol in the gas phase at 300 °C and atmospheric pressure of hydrogen was investigated over Ni-based catalysts supported on niobium oxide (Nb2O5) and exfoliated potassium hexaniobate (Nb-exf). The catalysts were prepared by two different methods: photodeposition (pd) and incipient wetness impregnation (im) and were characterized by N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption of ammonia (NH3-TPD) analyses. XRD analysis showed that all catalysts exhibited approximately the same crystallite size of the metallic nickel (15 nm). Regarding the catalytic tests, guaiacol was mainly converted to catechol (59.5–80.6%) and phenol (4.4–14.2%) regardless of the catalyst. Small amounts of benzene were only observed over Ni(im)/Nb2O5. The catalytic experiments showed that the main reaction pathway is the conversion of guaiacol through demethylation reaction producing catechol followed by phenol formation via dehydroxylation reaction. Ni(im)/Nb2O5 was tested for catalytic upgrading of pyrolysis vapor of different biomasses (lignin, microalgae, and malt residue), and it was able to reduce the yield of oxygenated products. The catalytic upgrading of pyrolysis vapor of microalgae using a catalyst-to-biomass weight ratio (C:B) of 3:1 showed the highest selectivity of hydrocarbons (57.44%). The catalyst concentration and the biomass used in the test showed a high influence on the product distribution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Teles CA, Francisco LR, Gonçalves VOO, Noronha FB, Richard F (2022) Effect of the support (Silica vs Niobia) and the pressure (atmospheric vs high pressure) on the catalytic performance of Pd based catalysts for the hydrodeoxygenation of m-Cresol. Catal Lett. https://doi.org/10.1007/s10562-022-04171-4

    Article  Google Scholar 

  2. Sulman A, Mäki-Arvela P, Bomont L, Alda-Onggar M, Fedorov V, Russo V, Eränen K, Peurla M, Akhmetzyanova U, Skuhrovcová L, Tišler Z, Grénman H, Wärnå J, Murzin DYu (2019) Kinetic and thermodynamic analysis of guaiacol hydrodeoxygenation. Catal Lett 149:2453–2467. https://doi.org/10.1007/s10562-019-02856-x

    Article  CAS  Google Scholar 

  3. Teles CA, De Souza PM, Rabelo-Neto RC, Griffin MB, Mukarakate C, Orton KA, Resasco DE, Noronha FB (2018) Catalytic upgrading of biomass pyrolysis vapors and model compounds using niobia supported Pd catalyst. Appl Catal B 238:38–50. https://doi.org/10.1016/j.apcatb.2018.06.073

    Article  CAS  Google Scholar 

  4. Hong L, Yang J, Li Y, Gao X, Song W, Zhang H (2022) Highly efficient hydrogenation of bio-oil by using vermiculite-supported Pd–Ni catalyst. Catal Lett 152:1407–1416. https://doi.org/10.1007/s10562-021-03741-2

    Article  CAS  Google Scholar 

  5. Wang C, Yuan X, Li S, Zhu X (2021) Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation. Renew Energy 169:1317–1329. https://doi.org/10.1016/j.renene.2021.01.112

    Article  CAS  Google Scholar 

  6. Eschenbacher A, Saraeian A, Shanks BH, Jensen PA, Li C, Duus JØ, Hansen AB, Mentzel UV, Henriksen UB, Ahrenfeldt J, Jensen AD (2020) Enhancing bio-oil quality and energy recovery by atmospheric hydrodeoxygenation of wheat straw pyrolysis vapors using Pt and Mo-based catalysts. Sustain Energy Fuels 4:1991–2008. https://doi.org/10.1039/C9SE01254K

    Article  CAS  Google Scholar 

  7. Ambursa MM, Juan JC, Yahaya Y, Taufiq-Yap YH, Lin Y-C, Lee HV (2021) A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renew Sustain Energy Rev 138:110667. https://doi.org/10.1016/j.rser.2020.110667

    Article  CAS  Google Scholar 

  8. Li Z, Jiang E, Xu X, Sun Y, Tu R (2020) Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga. Renew Energy 146:1991–2007. https://doi.org/10.1016/j.renene.2019.08.012

    Article  CAS  Google Scholar 

  9. Zhang J, Sudduth B, Sun J, Wang Y (2021) Hydrodeoxygenation of lignin-derived aromatic oxygenates over Pd-Fe bimetallic catalyst: a mechanistic study of direct C-O bond cleavage and direct ring hydrogenation. Catal Lett 151:932–939. https://doi.org/10.1007/s10562-020-03352-3

    Article  CAS  Google Scholar 

  10. Saraeian A, Nolte MW, Shanks BH (2019) Deoxygenation of biomass pyrolysis vapors: improving clarity on the fate of carbon. Renew Sustain Energy Rev 104:262–280. https://doi.org/10.1016/j.rser.2019.01.037

    Article  CAS  Google Scholar 

  11. Santana JA, Carvalho WS, Ataíde CH (2018) Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial kraft lignins. Ind Crops Prod 111:126–132. https://doi.org/10.1016/j.indcrop.2017.10.023

    Article  CAS  Google Scholar 

  12. Anand V, Gautam R, Vinu R (2017) Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga. Fuel 205:1–10. https://doi.org/10.1016/j.fuel.2017.05.049

    Article  CAS  Google Scholar 

  13. Silva LD, Lira TS, Xavier TP, Barrozo MAS, Dantas SC, Silvério BC, Santos KG (2022) Effect of temperature and MgCl2 concentration on the catalytic pyrolysis of malt waste using response surface methodology. Chem Select. https://doi.org/10.1002/slct.202200663

    Article  Google Scholar 

  14. Mukundan S, Konarova M, Atanda L, Ma Q, Beltramini J (2015) Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS2/C. Catal Sci Technol 5:4422–4432. https://doi.org/10.1039/C5CY00607D

    Article  CAS  Google Scholar 

  15. Koike N, Hosokai S, Takagaki A, Nishimura S, Kikuchi R, Ebitani K, Suzuki Y, Oyama ST (2016) Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. J Catal 333:115–126. https://doi.org/10.1016/j.jcat.2015.10.022

    Article  CAS  Google Scholar 

  16. Zhang J, Matsubara K, Yun G-N, Zheng H, Takagaki A, Kikuchi R, Oyama ST (2017) Comparison of phosphide catalysts prepared by temperature-programmed reduction and liquid-phase methods in the hydrodeoxygenation of 2-methylfuran. Appl Catal A 548:39–46. https://doi.org/10.1016/j.apcata.2017.06.009

    Article  CAS  Google Scholar 

  17. Barrios AM, Teles CA, De Souza PM, Rabelo-Neto RC, Jacobs G, Davis BH, Borges LEP, Noronha FB (2018) Hydrodeoxygenation of phenol over niobia supported Pd catalyst. Catal Today 302:115–124. https://doi.org/10.1016/j.cattod.2017.03.034

    Article  CAS  Google Scholar 

  18. Luo J, Monai M, Yun H, Arroyo-Ramírez L, Wang C, Murray CB, Fornasiero P, Gorte RJ (2016) The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts. Catal Lett 146:711–717. https://doi.org/10.1007/s10562-016-1705-x

    Article  CAS  Google Scholar 

  19. Fang H, Zheng J, Luo X, Du J, Roldan A, Leoni S, Yuan Y (2017) Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Appl Catal A 529:20–31. https://doi.org/10.1016/j.apcata.2016.10.011

    Article  CAS  Google Scholar 

  20. Tran NTT, Uemura Y, Chowdhury S, Ramli A (2016) Vapor-phase hydrodeoxygenation of guaiacol on Al-MCM-41 supported Ni and Co catalysts. Appl Catal A 512:93–100. https://doi.org/10.1016/j.apcata.2015.12.021

    Article  CAS  Google Scholar 

  21. Nowak I, Ziolek M (1999) Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99:3603–3624. https://doi.org/10.1021/cr9800208

    Article  CAS  PubMed  Google Scholar 

  22. Ted Oyama S, Onkawa T, Takagaki A, Kikuchi R, Hosokai S, Suzuki Y, Bando KK (2015) Production of phenol and cresol from guaiacol on nickel phosphide catalysts supported on acidic supports. Top Catal 58:201–210. https://doi.org/10.1007/s11244-015-0361-5

    Article  CAS  Google Scholar 

  23. Bomon J, Van Den Broeck E, Bal M, Liao Y, Sergeyev S, Van Speybroeck V, Sels BF, Maes BUW (2020) Brønsted acid catalyzed tandem defunctionalization of biorenewable ferulic acid and derivates into bio-catechol. Angew Chem Int Ed 59:3063–3068. https://doi.org/10.1002/anie.201913023

    Article  CAS  Google Scholar 

  24. Lu J, Liu X, Yu G, Lv J, Rong Z, Wang M, Wang Y (2020) Selective hydrodeoxygenation of guaiacol to cyclohexanol catalyzed by nanoporous nickel. Catal Lett 150:837–848. https://doi.org/10.1007/s10562-019-02967-5

    Article  CAS  Google Scholar 

  25. Bizeto MA, Constantino VRL (2004) Structural aspects and thermal behavior of the proton-exchanged layered niobate K4Nb6O17. Mater Res Bull 39:1729–1736. https://doi.org/10.1016/j.materresbull.2004.05.001

    Article  CAS  Google Scholar 

  26. Nunes BN, Patrocinio AOT, Bahnemann DW (2019) Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites. J Phys Condens Matter 31:394001. https://doi.org/10.1088/1361-648X/ab2c5e

    Article  CAS  PubMed  Google Scholar 

  27. Borel LDMS, Lira TS, Ribeiro JA, Ataíde CH, Barrozo MAS (2018) Pyrolysis of brewer’s spent grain: kinetic study and products identification. Ind Crops Prod 121:388–395. https://doi.org/10.1016/j.indcrop.2018.05.051

    Article  CAS  Google Scholar 

  28. Borel LDMS, Reis Filho AM, Xavier TP, Lira TS, Barrozo MAS (2020) An investigation on the pyrolysis of the main residue of the brewing industry. Biomass Bioenergy 140:105698. https://doi.org/10.1016/j.biombioe.2020.105698

    Article  CAS  Google Scholar 

  29. Resende KA, Noronha FB, Hori CE (2020) Hydrodeoxygenation of phenol over metal supported Niobia catalysts. Renew Energy 149:198–207. https://doi.org/10.1016/j.renene.2019.12.061

    Article  CAS  Google Scholar 

  30. Rade LL, Lemos COT, Barrozo MAS, Ribas RM, Monteiro RS, Hori CE (2018) Optimization of continuous esterification of oleic acid with ethanol over niobic acid. Renew Energy 115:208–216. https://doi.org/10.1016/j.renene.2017.08.035

    Article  CAS  Google Scholar 

  31. Venezia AM, Bertoncello R, Deganello G (1995) X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surf Interface Anal 23:239–247. https://doi.org/10.1002/sia.740230408

    Article  CAS  Google Scholar 

  32. Lian KK, Kirk DW, Thorpe SJ (1995) Investigation of a “two-state” Tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy. J Electrochem Soc 142:3704–3712. https://doi.org/10.1149/1.2048402

    Article  CAS  Google Scholar 

  33. Chary KVR, Lakshmi KS, Rao PVR, Rao KSR, Papadaki M (2004) Characterization and catalytic properties of niobia supported nickel catalysts in the hydrodechlorination of 1,2,4-trichlorobenzene. J Mol Catal A Chem 223:353–361. https://doi.org/10.1016/j.molcata.2003.09.049

    Article  CAS  Google Scholar 

  34. Gomes MAB, Bulhões LODS, De Castro SC, Damião AJ (1990) The electrochromic process at nb2o5 electrodes prepared by thermal oxidation of niobium. J Electrochem Soc 137:3067–3070. https://doi.org/10.1149/1.2086161

    Article  CAS  Google Scholar 

  35. Coşkun ÖD, Demirel S, Atak G (2015) The effects of heat treatment on optical, structural, electrochromic and bonding properties of Nb2O5 thin films. J Alloy Compd 648:994–1004. https://doi.org/10.1016/j.jallcom.2015.07.053

    Article  CAS  Google Scholar 

  36. Zhao HY, Li D, Bui P, Oyama ST (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391:305–310. https://doi.org/10.1016/j.apcata.2010.07.039

    Article  CAS  Google Scholar 

  37. Wu S-K, Lai P-C, Lin Y-C, Wan H-P, Lee H-T, Chang Y-H (2013) Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts. ACS Sustain Chem Eng 1:349–358. https://doi.org/10.1021/sc300157d

    Article  CAS  Google Scholar 

  38. De Souza PM, Rabelo-Neto RC, Borges LEP, Jacobs G, Davis BH, Sooknoi T, Resasco DE, Noronha FB (2015) Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports. ACS Catal 5:1318–1329. https://doi.org/10.1021/cs501853t

    Article  CAS  Google Scholar 

  39. Mortensen PM, Grunwaldt J-D, Jensen PA, Jensen AD (2013) Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal 3:1774–1785. https://doi.org/10.1021/cs400266e

    Article  CAS  Google Scholar 

  40. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B Environ 101:239–245. https://doi.org/10.1016/j.apcatb.2010.10.025

    Article  CAS  Google Scholar 

  41. Teles CA, De Souza PM, Rabelo-Neto RC, Teran A, Jacobs G, Vilela Weikert C, Magriotis ZM, Gonçalves VOO, Resasco DE, Noronha FB (2022) Reaction pathways for the HDO of guaiacol over supported Pd catalysts: effect of support type in the deoxygenation of hydroxyl and methoxy groups. Mol Catal 523:111491. https://doi.org/10.1016/j.mcat.2021.111491

    Article  CAS  Google Scholar 

  42. Forzatti P (1999) Catalyst deactivation. Catal Today 52:165–181. https://doi.org/10.1016/S0920-5861(99)00074-7

    Article  CAS  Google Scholar 

  43. Bartholomew CH (1987) Mechanisms of nickel catalyst poisoning. In: Studies in surface science and catalysis. Elsevier, pp 81–104. https://doi.org/10.1016/S0167-2991(09)60352-9

  44. Simão BL, Santana Júnior JA, Chagas BME, Cardoso CR, Ataíde CH (2018) Pyrolysis of Spirulina maxima: kinetic modeling and selectivity for aromatic hydrocarbons. Algal Res 32:221–232. https://doi.org/10.1016/j.algal.2018.04.007

    Article  Google Scholar 

  45. Nolte MW, Zhang J, Shanks BH (2016) Ex situ hydrodeoxygenation in biomass pyrolysis using molybdenum oxide and low pressure hydrogen. Green Chem 18:134–138. https://doi.org/10.1039/C5GC01614B

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of CAPES, CNPq, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla E. Hori.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, L.G., dos Santos, G.E.S., Alves, H.O. et al. Hydrogenation of Guaiacol and Pyrolysis of Biomass Using Nickel and Niobium-Based Catalysts. Catal Lett 154, 2976–2988 (2024). https://doi.org/10.1007/s10562-023-04500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04500-1

Keywords

Navigation