Skip to main content
Log in

Novel Chiral Helical Polyisocyanides Containing Cyclohexanediamine Pendants for Asymmetric Michael Addition Reaction and Aldol Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel helical poly(phenylisocyanide)-supported catalyst bearing (1R,2R)-1,2-cyclohexanediamine pendant (poly-2m) was synthesized. The chiral cyclohexanediamine polymer catalyst exhibited superior catalytic activity and stereoselectivity in the Michael addition reaction. The polymer poly-2200 catalyzed the Michael addition reaction of cyclohexanone with trans-nitrosostyrene in methanol at the presence of benzoic acid with an enantiomeric excess (ee) value up to 97% and diastereoselectivity (dr) value of 79/21. In addition, the chiral polymer catalyst can be recycled for 3 times in the asymmetric Michael addition reaction without significantly lossing the catalytic activity of the catalyst. Moreover, the chiral cyclohexanediamine catalyst poly-2200 can also catalyze the Aldol reaction of p-nitrobenzaldehyde with cyclohexanone, with ee value of 49% and dr value of 60/40.

Graphical Abstract

Asymmetric Michael addition reaction and Aldol reaction catalyzed by poly-2m

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC (2022) Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 34:1019–1034

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Wang Y, Xie L, Cong Y, Zeng Y, Sun M, Shen Q (2023) Synthesis, characterization and anticancer activity of cis-oxalatedimycophenolic acid-(trans-1,2-cyclohexanediamine) platinum (IV). Chin J Syn Chem 31:61–66

    Google Scholar 

  3. James T, Van Gemmeren M, List B (2015) Development and applications of disulfonimides in enantioselective organocatalysis. Chem Rev 115:9388–9409

    Article  CAS  PubMed  Google Scholar 

  4. Govender T, Arvidsson PI, Maguire GEM, Kruger HG, Naicker T (2016) Enantioselective organocatalyzed transformations of β-ketoesters. Chem Rev 116:9375–9437

    Article  CAS  PubMed  Google Scholar 

  5. Qin Y, Zhu L, Luo S (2017) Organocatalysis in inert C-H bond functionalization. Chem Rev 117:9433–9520

    Article  CAS  PubMed  Google Scholar 

  6. MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wang YB, Tan B (2018) Construction of axially chiral compounds via asymmetric organocatalysis. Acc Chem Res 51:534–547

    Article  CAS  PubMed  Google Scholar 

  8. Shen L, Xu L, Hou XH, Liu N, Wu ZQ (2018) Polymerization amplified stereoselectivity (pass) of asymmetric Michael addition reaction and Aldol reaction catalyzed by helical poly(phenyl isocyanide) bearing secondary amine pendants. Macromolecules 51(23):9547–9554

    Article  ADS  CAS  Google Scholar 

  9. Evans AC, Lu A, Ondeck C, Longbottom DA, O’Reilly RK (2010) Organocatalytic tunable amino acid polymers prepared by controlled radical polymerization. Macromolecules 43:6374–6380

    Article  ADS  CAS  Google Scholar 

  10. Nagata Y, Nishikawa T, Suginome M (2015) Exerting control over the helical chirality in the main chain of sergeants- and -soldiers-type poly(quinoxaline-2,3-diyl)s by changing from random to block copolymerization protocols. J Am Chem Soc 137:4070–4073

    Article  CAS  PubMed  Google Scholar 

  11. Maeda K, Yashima E (2017) Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top Curr Chem 375(4):72

    Article  Google Scholar 

  12. Fujiki M (2014) Supramolecular chirality: solvent chirality transfer in molecular chemistry and polymer chemistry. Symmetry 6(3):677–703

    Article  ADS  CAS  Google Scholar 

  13. Yashima E, Maeda K (2008) Chirality-responsive helical polymers. Macromolecules 41(1):3–12

    Article  ADS  CAS  Google Scholar 

  14. Zhou L, Chu BF, Xu XY, Xu L, Liu N, Wu ZQ (2017) Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric Aldol reaction using helical polyisocyanides bearing proline pendants. ACS Macro Lett 6(8):824–829

    Article  CAS  Google Scholar 

  15. Gao H, Liu Z, Li CL (2022) Preparation and performance of cyclohexanediamine supported catalyst. Chem Reag 44:1519–1524

    CAS  Google Scholar 

  16. Zhang C, Qiu Y, Bo S, Wang F, Wang Y, Liu L, Zhou Y, Niu H, Dong H, Satoh T (2019) Recyclable helical poly(phenylacetylene)-supported catalyst for asymmetric Aldol reaction in aqueous media. J Polym Sci Part A 57:1024–1031

    Article  CAS  Google Scholar 

  17. Li CL, Wang JH, Ding HY (2021) Recyclable helical poly(phenyl isocyanide)-supported L-proline catalyst for direct asymmetric Aldol reaction in brine. Catal Lett 151:1180–1190

    Article  CAS  Google Scholar 

  18. Deng JR, Zhao B, Deng JP (2016) Optically active helical polyacetylene bearing ferrocenyl amino-acid derivative in pendants. Preparation and application as chiral organocatalyst for asymmetric Aldol reaction. Ind Eng Chem Res 55:7328–7337

    Article  CAS  Google Scholar 

  19. Wu ZQ, Song X, Li YX, Zhou L, Zhu YY, Chen Z, Liu N (2023) Achiral organoiodine-functionalized helical polyisocyanides for multiple asymmetric dearomative oxidations. Nat Commun 14:566

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue YX, Zhu YY, Gao LM, He XY, Liu N, Zhang WY, Yin J, Ding YS, Zhou HP, Wu ZQ (2014) Air-stable (phenylbuta-1,3-diynyl)palladium(II) complexes: highly active initiators for living polymerization of isocyanides. J Am Chem Soc 136(12):4706–4713

    Article  CAS  PubMed  Google Scholar 

  21. Hu G, Li W, Hu Y, Xu A, Yan J, Liu L, Zhang X, Liu K, Zhang AF (2013) Water-soluble chiral polyisocyanides showing thermoresponsive behavior. Macromolecules 46:1124–1132

    Article  ADS  CAS  Google Scholar 

  22. Asaoka S, Joza A, Minagawa S, Song LJ, Suzuki Y, Iyoda T (2013) Fast controlled living polymerization of arylisocyanide initiated by aromatic nucleophile adduct of nickel isocyanide complex. ACS Macro Lett 2:906–911

    Article  CAS  PubMed  Google Scholar 

  23. Zhao QQ, Lam YH, Kheirabadi M, Xu CS, Houk KN, Schafmeister CE (2012) Hydrophobic substituent effects on Proline catalysis of Aldol reactions in water. J Org Chem 77(10):4784–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serra-Pont A, Alfonso I, Jimeno C, Solà J (2015) Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric Aldol reaction. Chem Commun 51:17386–17389

    Article  CAS  Google Scholar 

  25. Obregon-Zúniga A, Milan M, Juaristi E (2017) Improving the catalytic performance of (S)-Proline as organocatalyst in asymmetric Aldol reactions in the presence of solvate ionic liquids: involvement of a supramolecular aggregate. Org Lett 19(5):1108–1111

    Article  PubMed  Google Scholar 

  26. Tan B, Zeng XF, Lu YP, Chua P, Zhong GF (2009) Rational design of organocatalyst: highly stereoselective Michael addition of cyclic ketones to nitroolefins. Org Lett 11:1927–1930

    Article  CAS  PubMed  Google Scholar 

  27. Delaney JP, Brozinski HL, Henderson LC (2013) Synergistic effects within a C 2-symmetric organocatalyst: the potential formation of a chiral catalytic pocket. Org Biomol Chem 11:2951–2960

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Kim DO, Kim DW, Sagong K (2013) Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area. J Solid State Chem 197:261–265

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Ningxia Province (Grant Number 2022AAC03249), the National Natural Science Foundation of China (NSFC, Nos. 52263022), the Graduate Student Innovation Project of North Minzu University (Grant Number YCX22161), the Scientific Research Start-up Project for Recruitment Talents of North Minzu University in 2020 (Grant Number 2020KYQD11). The author would like to Prof. Zong-Quan Wu of the College of Chemistry at Jilin University for his guidance during my three years of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonglong Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhan, M., Wang, Z. et al. Novel Chiral Helical Polyisocyanides Containing Cyclohexanediamine Pendants for Asymmetric Michael Addition Reaction and Aldol Reaction. Catal Lett 154, 1420–1430 (2024). https://doi.org/10.1007/s10562-023-04423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04423-x

Keywords

Navigation