Skip to main content
Log in

Melamine–Formaldehyde Resin Derived Carbon Catalysts with Abundant Intrinsic Defects to Afford Superior Oxygen Reduction Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

More recently, sp3 defects have been reported to show great potential for enhancing the oxygen reduction reaction (ORR) activity of metal-free carbon catalysts. However, it is still a challenge to increase the sp3 defects for achieving superior ORR activity, especially using organics as precursors by ambient-pressure pyrolysis. Herein, sp3-hybridized C and N enriched melamine–formaldehyde resin microspheres were employed for pyrolysis to increase sp3 defects in derived carbons under activation of urea. Under the synergistic effects of intrinsic characteristics of MF microspheres and the activation of sacrificial urea, the derived carbon was endowed to abundant sp3 defects and N species couple with a hierarchical porous structure. Owing to these specific features, the derived metal-free carbon catalyst showed extremely superior ORR activity, zinc-air battery performance and durability. This study provides an insight into the inheritance of sp3 carbon from the precursor to the sp3 defects in final derived carbon catalysts.

Graphical Abstract

The sp3 defects were increased by pyrolysis sp3-hybridized C and N enriched melamine–formaldehyde microspheres under the activation of urea, by which a metal-free carbon catalyst with superior ORR activity was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S (2020) Adv Mater 32:1907879

    Article  CAS  Google Scholar 

  2. Tang L, Meng X, Deng D, Bao X (2019) Adv Mater 31:e1901996

    Article  PubMed  Google Scholar 

  3. Banham D, Kishimoto T, Zhou Y, Sato T, Bai K, Ozaki JI, Imashiro Y, Ye S (2018) Sci Adv 4:eaar7180

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fu G, Wang J, Chen Y, Liu Y, Tang Y, Goodenough J, Lee JM (2018) Adv Energy Mater 8:1802263

    Article  Google Scholar 

  5. Fu G, Wang Y, Tang Y, Zhou K, Goodenough JB, Lee J-M (2019) ACS Mater Lett 1:123–131

    Article  CAS  Google Scholar 

  6. Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Chem Rev 116:3594–3657

    Article  CAS  PubMed  Google Scholar 

  7. Huang L, Zaman S, Tian X, Wang Z, Fang W, Xia BY (2021) Acc Chem Res 54:311–322

    Article  CAS  PubMed  Google Scholar 

  8. Xiang Z-P, Tan A-D, Fu Z-Y, Piao J-H, Liang Z-X (2020) J Energy Chem 49:323–326

    Article  Google Scholar 

  9. Guo Z, Zhang Z, Li Z, Dou M, Wang F (2019) Nano Energy 57:108–117

    Article  CAS  Google Scholar 

  10. Tang C, Zhang Q (2017) Adv Mater 29:1604103

    Article  Google Scholar 

  11. Tang T, Jiang W-J, Liu X-Z, Deng J, Niu S, Wang B, Jin S-F, Zhang Q, Gu L, Hu J-S, Wan L-J (2020) J Am Chem Soc 142:7116–7127

    Article  CAS  PubMed  Google Scholar 

  12. He C, Zhang Y, Zhang Y, Zhao L, Yuan L-P, Zhang J, Ma J, Hu J-S (2020) Angew Chem Int Ed 59:4914–4919

    Article  CAS  Google Scholar 

  13. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Jiang W-J, Niu S, Zhang H, Liu J, Li H, Huang G-F, Jiang L, Huang W-Q, Hu J-S, Hu W (2020) Adv Mater 32:1906015

    Article  CAS  Google Scholar 

  15. Liu Z, Wang M, Luo X, Li S, Li S, Zhou Q, Xu W, Wu R (2021) Appl Surf Sci 544:148912

    Article  CAS  Google Scholar 

  16. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Angew Chem Int Ed 50:7132–7135

    Article  CAS  Google Scholar 

  17. Wu K-H, Wang D-W, Gentle IR (2015) Carbon 81:295–304

    Article  CAS  Google Scholar 

  18. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764

    Article  CAS  PubMed  Google Scholar 

  19. Xie Q, Si W, Shen Y, Wang Z, Uyama H (2021) Nanoscale 13:16296–16306

    Article  CAS  PubMed  Google Scholar 

  20. Xie Q, Si W, Wang Z, Shu Y, Li C, Shen Y, Uyama H (2023) Chem Eng J 452:139221

    Article  CAS  Google Scholar 

  21. Si W, Xie Q, Zhang R, Wang Z, Shen Y, Uyama H (2022) Dalton Trans 51:11363–11371

    Article  CAS  PubMed  Google Scholar 

  22. Shao W, Yan R, Zhou M, Ma L, Roth C, Ma T, Cao S, Cheng C, Yin B, Li S (2023) Electrochem Energy Rev 6:11

    Article  CAS  Google Scholar 

  23. Li Y, Li Q, Wang H, Zhang L, Wilkinson DP, Zhang J (2019) Electrochem Energy Rev 2:518–538

    Article  CAS  Google Scholar 

  24. Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z (2015) ACS Catal 5:6707–6712

    Article  CAS  Google Scholar 

  25. Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L (2016) Chemical Commun 52:2764–2767

    Article  CAS  Google Scholar 

  26. Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown CL, Yao X (2016) Adv Mater 28:9532–9538

    Article  CAS  PubMed  Google Scholar 

  27. Cao Y, Liu Z, Tang Y, Huang C, Wang Z, Liu F, Wen Y, Shan B, Chen R (2021) Carbon 180:1–9

    Article  Google Scholar 

  28. Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D, Yu G, Li Y, Wang S (2019) Angew Chem Int Ed 58:1019–1024

    Article  CAS  Google Scholar 

  29. Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X (2019) Nat Catal 2:688–695

    Article  CAS  Google Scholar 

  30. Jin H, Huang H, He Y, Feng X, Wang S, Dai L, Wang J (2015) J Am Chem Soc 137:7588–7591

    Article  CAS  PubMed  Google Scholar 

  31. Gao J, Wang Y, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, Wang G, Yin Z, Ma D (2019) Angew Chem Int Ed 58:15089–15097

    Article  CAS  Google Scholar 

  32. Visscher GT, Nesting DC, Badding JV, Bianconi PA (1993) Science 260:1496–1499

    Article  CAS  PubMed  Google Scholar 

  33. Hao M-g, Dun R-m, Su Y-m, Li W-m (2020) Nanoscale 12:15115–15127

    Article  CAS  PubMed  Google Scholar 

  34. Friedel B, Greulich-Weber S (2006) Small 2:859–863

    Article  CAS  PubMed  Google Scholar 

  35. Choi EY, Kim DE, Lee SY, Kim CK (2020) Carbon 166:245–255

    Article  CAS  Google Scholar 

  36. Zhao Y, Wang X, Guo X, Cheng D, Zhou H, Saito N, Fan T (2021) Carbon 184:609–617

    Article  CAS  Google Scholar 

  37. Lu X, Ge L, Yang P, Levin O, Kondratiev V, Qu Z, Liu L, Zhang J, An M (2021) Appl Surf Sci 562:150114

    Article  CAS  Google Scholar 

  38. Men B, Sun Y, Li M, Hu C, Zhang M, Wang L, Tang Y, Chen Y, Wan P, Pan J (2016) ACS Appl Mater Interfaces 8:1415–1423

    Article  CAS  PubMed  Google Scholar 

  39. Wei J, Hu Y, Liang Y, Kong B, Zhang J, Song J, Bao Q, Simon GP, Jiang SP, Wang H (2015) Adv Funct Mater 25:5768–5777

    Article  CAS  Google Scholar 

  40. Nimbalkar S, Montgomery-Walsh R, Bunnell J, Galindo SL, Cariappa BK, Gautam A, Arvizu R, Yang S, Kassegne S (2022) Carbon 196:1012–1023

    Article  CAS  Google Scholar 

  41. Wang X, Zhao T (2016) Text Res J 87:1848–1859

    Article  Google Scholar 

  42. Wang Q, Ji Y, Lei Y, Wang Y, Wang Y, Li Y, Wang S (2018) ACS Energy Lett 3:1183–1191

    Article  CAS  Google Scholar 

  43. Arafat Y, Azhar MR, Zhong Y, Tadé MO, Shao Z (2021) Mater Res Bull 140:111315

    Article  CAS  Google Scholar 

  44. Zhang X, Zhang X, Zhao S, Wang YQ, Lin X, Tian ZQ, Shen PK, Jiang SP (2021) Electrochim Acta 370:137712

    Article  CAS  Google Scholar 

  45. Takeyasu K, Furukawa M, Shimoyama Y, Singh SK, Nakamura J (2021) Angew Chem Int Ed 60:5121–5124

    Article  CAS  Google Scholar 

  46. Zhang J, Zhang G, Jin S, Zhou Y, Ji Q, Lan H, Liu H, Qu J (2020) Carbon 163:154–161

    Article  CAS  Google Scholar 

  47. Miao H, Li S, Wang Z, Sun S, Kuang M, Liu Z, Yuan J (2017) Int J Hydrog Energy 42:28298–28308

    Article  CAS  Google Scholar 

  48. Luo E, Xiao M, Ge J, Liu C, Xing W (2017) J Mater Chem A 5:21709–21714

    Article  CAS  Google Scholar 

  49. Tang L, Xu Q, Zhang Y, Chen W, Wu M (2022) Electrochem Energy Rev 5:32–81

    Article  CAS  Google Scholar 

Download references

Funding

We all thank to the financial support of the Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-107) and the Natural Science Foundation of China (Program No. 22178284).

Author information

Authors and Affiliations

Authors

Contributions

WS and QX conducted the experiments and characterizations; ZW conceived of the presented idea, wrote the paper and supervised the findings of this work; all authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Yehua Shen or Zheng Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, W., Xie, Q., Shen, Y. et al. Melamine–Formaldehyde Resin Derived Carbon Catalysts with Abundant Intrinsic Defects to Afford Superior Oxygen Reduction Activity. Catal Lett 154, 1819–1827 (2024). https://doi.org/10.1007/s10562-023-04412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04412-0

Keywords

Navigation