Skip to main content
Log in

The Effect of Lithium on NiMo/Al2O3 Hydrotreating Catalysts Prepared from Heteropolycompounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Recently, simultaneous hydrotreatment of various petroleum fractions and plant feedstocks has been in demand. NiMo catalysts can be active in these processes. Therefore, supported NiMo oxide catalysts were prepared by impregnating an alumina support with Anderson’s molybdenum salt (ammonium salt of nickel heteropolymolybdate (NH4)4NiMo6O24H6) and lithium carbonate. The prepared catalysts were tested in hydrodesulfurization (HDS) of thiophene and parallel HDS/HDO (hydrodeoxygenation) of 1-benzothiophene and octanoic acid. Experimental data showed a positive effect of lithium on the parallel HDS/HDO reactions and a negative effect on the HDS of thiophene. A significant effect of lithium on the acidity and reducibility of the NiMo/Al2O3 catalyst as well as the contribution of an Anderson-type heteropolycompound was demonstrated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data will be made available on request.

References

  1. K.Y. Lee, M. Misono (1997) in: Handbook of heterogeneous catalysis, vol. 1, eds. G. Ertl and H. Knoezinger. Wiley–VCH, Weinheim.

  2. Hayashi H, Moffat JB (1983) Methanol conversion over metal salts of 12-tungstophosphoric acid. J Catal 81:61–66. https://doi.org/10.1016/0021-9517(83)90146-X

    Article  CAS  Google Scholar 

  3. Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev-Sci Eng 29:269–321. https://doi.org/10.1080/01614948708078072

    Article  CAS  Google Scholar 

  4. Cheng WC, Luthra NP (1988) NMR study of the adsorption of phosphomolybdates on alumina. J Catal 109:163–169. https://doi.org/10.1016/0021-9517(88)90194-7

    Article  CAS  Google Scholar 

  5. Goncharova OI, Yurieva TM, Davydov AA (1985) Influence of the nature of the support on the composition and structure of molybdenum supported heteropolycompounds. Kinet Catal (Transl of Kinet Katal) 27:942–949

    Google Scholar 

  6. Palcheva R, Spojakina AA, Dimitrov L, Jiratova K (2009) 12-Tungstophosphoric heteropolyacid supported on modified SBA-15 as catalyst in HDS of thiophene. Micropor Mesopor Mater 122(1–3):128–134. https://doi.org/10.1016/j.micromeso.2009.02.026

    Article  CAS  Google Scholar 

  7. Kraleva E, Spojakina AA, Edreva-Kardjieva R, Jiratova K, Petrov L (2007) Titania-supported mixed HPMoV polyoxometallates as precursors of hydrodesulfurization catalysts. React Kinet Catal Lett 92(1):111–119. https://doi.org/10.1007/s11144-007-4896-8

    Article  CAS  Google Scholar 

  8. Spojakina A (1994) Damyanova S (1994) IR and DRS study of TiO2-supported 12-molybdophosphoric heteropolycompounds. React Kinet Catal Lett 53(2):405–412. https://doi.org/10.1007/BF02073049

    Article  CAS  Google Scholar 

  9. Spojakina A, Kostova N, Jiratova K (1998) Effect of heteroatom on properties of SiO2-supported heteropolymolybdates. Collect Czech Chem Commun 63:1927. https://doi.org/10.1135/cccc19981927

    Article  CAS  Google Scholar 

  10. Spojakina A, Jiratova K, Kostova N, Kocianova J, Stamenova M (2003) Tungsten/alumina catalysts: effect of H3PW12O40 countercation on surface properties and hydrodesulfurization activity. Kinet Katal 44:813–818. https://doi.org/10.1023/B:KICA.0000009059.80675.4e

    Article  CAS  Google Scholar 

  11. van Veen JAR, Hendriks PAJM, Andrea RR, Romers EJGM, Wilson AE (1990) Chemistry of phosphomolybdate adsorption on alumina surfaces 1: the molybdate/alumina system. J Phys Chem 94:5275–5282. https://doi.org/10.1021/j100376a021

    Article  Google Scholar 

  12. Nikulshin PA, Mozhaev AV, Pimerzin AA, Konovalov VV, Pimerzin AA (2012) CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: effect of Co/Mo ratio. Fuel 100:24–33. https://doi.org/10.1016/j.fuel.2011.11.028

    Article  CAS  Google Scholar 

  13. Cabello CI, Cabrerizo FM, Alvarez A, Thomas HJ (2002) Decamolybdodicobaltate(III) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J Mol Catal A: Chem 186:89–100. https://doi.org/10.1016/S1381-1169(02)00043-2

    Article  CAS  Google Scholar 

  14. Nikulshin PA, Mozhaev AV, Ishutenko DI, Minaev PP, Lyashenko AI, Pimerzin AA (2012) Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18]n− (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6− on their catalytic properties. Kinet Catal 53:620–631. https://doi.org/10.1134/S0023158412050114

    Article  CAS  Google Scholar 

  15. Pimerzin AA, Tomina NN, Nikulshin PA et al (2015) Catalysts based on molybdenum and tungsten heteropoly compounds for the hydrotreatment of oil fractions. Catal Ind 7:30–37. https://doi.org/10.1134/S2070050415010110

    Article  Google Scholar 

  16. Dhandapani B, Clair TSt, Oyama ST (1998) Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl Catal A 168:219–228. https://doi.org/10.1016/S0926-860X(97)00342-6

    Article  CAS  Google Scholar 

  17. Odebunmi EO, Ollis DF (1983) Catalytic hydrodeoxygenation II: interactions between catalytic hydrodeoxygenation of m-cresol and hydrodesulfurization of benzothiophene and dibenzothiophene. J Catal 80:65–75. https://doi.org/10.1016/0021-9517(83)90230-0

    Article  CAS  Google Scholar 

  18. Varakin AN, Salnikov VA, Nikulshina MS, Maslakov KI, Mozhaev AV, Nikulshin PA (2017) Beneficial role of carbon in Co(Ni)MoS catalysts supported on carbon-coated alumina for co-hydrotreating of sunflower oil with straight-run gas oil. Catal Today 292:110–120. https://doi.org/10.1016/j.cattod.2016.10.031

    Article  CAS  Google Scholar 

  19. Vonortas A, Papayannakos N (2016) Hydrodesulphurization and hydrodeoxygenation of gasoil-vegetable oil mixtures over a Pt/γ-Al2O3 catalyst. Fuel Process Technol 150:26–131. https://doi.org/10.1016/j.fuproc.2016.05.013

    Article  CAS  Google Scholar 

  20. Vonortas A, Kubicka D, Papayannakos N (2014) Catalytic co-hydroprocessing of gasoil–palm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst. Fuel 116:49–55. https://doi.org/10.1016/j.fuel.2013.07.074

    Article  CAS  Google Scholar 

  21. Nikulshin PA, Salnikov VA, Pimerzin AA et al (2016) Co-hydrotreating of straight_run diesel fraction and vegetable oil on Co(Ni) -PMo/Al2O3 catalysts. Petrol Chem 56:56–61. https://doi.org/10.1134/S0965544115080150

    Article  CAS  Google Scholar 

  22. Kaluža L, Zdražil M, Gulková D, Vít Z (2013) The influence of the chelating agent nitrilotriacetic acid on promotion of hydrodesulfurization activity by Co in CoMo catalysts prepared on Al2O3, C, and ZrO2 supports. Chem Eng Trans 32:841–846. https://doi.org/10.3303/CET1332141

    Article  Google Scholar 

  23. Kaluža L, Gulková D, Vít Z, Zdražil M (2007) Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst. Appl Catal A Gen 324:30–35. https://doi.org/10.1016/j.apcata.2007.02.050

    Article  CAS  Google Scholar 

  24. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199:147–190. https://doi.org/10.1016/S0926-860X(99)00555-4

    Article  CAS  Google Scholar 

  25. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  26. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56. https://doi.org/10.1016/j.cattod.2012.11.008

    Article  CAS  Google Scholar 

  27. Kaluža L, Karban J, Gulková D (2013) Activity and selectivity of Co(Ni)Mo sulfides supported on MgO, Al2O3, ZrO2, TiO2, MCM-41 and activated carbon in parallel hydrodeoxygenation of octanoic acid and hydrodesulfurization of 1-benzothiophene. React Kinet Mech Catal 127:887–902. https://doi.org/10.1007/s11144-019-01620-x

    Article  CAS  Google Scholar 

  28. Varakin AN, Mozhaev AV, Pimerzin AA, Nikulshin PA (2020) Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported Co(Ni)-MoS2 catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil. Catal Today 357:556–564. https://doi.org/10.1016/j.cattod.2019.06.005

    Article  CAS  Google Scholar 

  29. Ramesh A, Tamizhdurai P, Krishnan PS, Ponnusamy VK, Sakthinathan S, Shanthi K (2020) Catalytic transformation of non-edible oils to biofuels through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts. Fuel 262:116494. https://doi.org/10.1016/j.fuel.2019.116494

    Article  CAS  Google Scholar 

  30. Solís-Casados DA, Escobar-Alarcón L, Klimova T et al (2016) Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization. Catal Today 271:35–44. https://doi.org/10.1016/j.cattod.2015.07.046

    Article  CAS  Google Scholar 

  31. Escobar-Alarcyn L, Klimova T, Escobar-Aguilar J, Romero S, Morales-Ramirez C, Solis-Casados D (2013) Preparation and characterization of Al2O3–MgO catalytic supports modified with lithium. Fuel 110:278–285. https://doi.org/10.1016/j.fuel.2012.10.013

    Article  CAS  Google Scholar 

  32. Tsigdinos GA (1978) Heteropoly compounds of molybdenum and tungsten. Top Curr Chem 76:1–64. https://doi.org/10.1007/BFb0047026

    Article  CAS  Google Scholar 

  33. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  34. Barrett EP, Joyner LG, Halenda PP (1951) the determination of pore volume and area distributions in porous substances I: computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  35. Lecloux A, Pirard JP (1979) The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J Colloid Interface Sci 70:265–281. https://doi.org/10.1016/0021-9797(79)90031-6

    Article  CAS  Google Scholar 

  36. Glotov AP, Vutolkina AV, Vinogradov NA, Pimerzin AA, Vinokurov VA, AlA P (2021) Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite. Catal Today 377:82–91. https://doi.org/10.1016/j.cattod.2020.10.010

    Article  CAS  Google Scholar 

  37. Lan X, Pestman R, Hensen EJM, Weber T (2021) Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides – The influence of metal–phosphorus stoichiometry on catalytic properties. J Catal 403:181–193. https://doi.org/10.1016/j.jcat.2021.01.031

    Article  CAS  Google Scholar 

  38. Wu H, Duan A, Zhao Z, Li T, Prins R, Zhou X (2014) Synthesis of NiMo hydrodesulfurization catalyst supported on a composite of nano-sized ZSM-5 zeolite enwrapped with mesoporous KIT-6 material and its high isomerization selectivity. J Catal 317:303–317. https://doi.org/10.1016/j.jcat.2014.07.002

    Article  CAS  Google Scholar 

  39. Davydov AA, Goncharova OI (1993) Use of IR spectroscopy in studies of catalysts based on molybdenum heteropoly compounds supported on oxides. Usp Khim 62:118–134. https://doi.org/10.1070/RC1993v062n02ABEH000008

    Article  Google Scholar 

  40. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenomena 8:129–137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  41. Vissers JPR, Scheffer B, de Beer VHJ, Moulijn JA et al (1987) Effect of the support on the structure of Mo-based hydrodesulfurization catalysts: activated carbon versus alumina. J Catal 105:277–284. https://doi.org/10.1016/0021-9517(87)90058-3

    Article  CAS  Google Scholar 

  42. Kordulis CH, Voliotis S, Lycourghiotis A, Vattis D, Delmon B (1984) Studies on the state of dispersion of Mo(VI) supported on γ-Al2O3 doped with alkali cations. Appl Catal 11:179–193. https://doi.org/10.1016/S0166-9834(00)81877-1

    Article  CAS  Google Scholar 

  43. Cabello CI, Botto IL, Thomas HJ (1994) Reducibility and thermal behavior of some Anderson phases. Thermochim Acta 232:183–193. https://doi.org/10.1016/0040-6031(94)80058-8

    Article  CAS  Google Scholar 

  44. Tanabe K, Makoto M, Ono Y, Hattori, H (1989) New solid acids and bases. Stud Surf Sci Catal 51, 1st ed., Elsevier, Kodansha.

  45. Palcheva R, Kaluža L, Spojakina A, Jirátová K, Tyuliev G (2012) NiMo/γ-Al2O3 catalysts from Ni heteropolyoxomolybdate and effect of alumina modification by B Co, or Ni. Chin J Catal 33:952–961. https://doi.org/10.1016/S1872-2067(11)60376-8

    Article  CAS  Google Scholar 

  46. Nikulshin PA, Tomina NN, Pimerzin AA, Stakheev AYu, Mashkovsky IS, Kogan, (2011) Effect of the second metal of Anderson type heteropolycompounds on hydrogenation and hydrodesulphurization properties of XMo6(S)/Al2O3 and Ni3-XMo6(S)/Al2O3 catalysts. Appl Catal A: Gen 393:146–152. https://doi.org/10.1016/j.apcata.2010.11.033

    Article  CAS  Google Scholar 

  47. Nicosia D, Prins R (2005) 31P MAS NMR and Raman study of a Co(Zn)MoP/γ -Al2O3 HDS catalyst precursor containing triethylene glycol. J Catal 234:414–420. https://doi.org/10.1016/j.jcat.2005.07.011

    Article  CAS  Google Scholar 

  48. Escobar J, Barrera MC, Gutiérrez AW, Cortés-Jacome MA, Angeles-Chávez C, Toledo JA, Solís-Casados DA (2018) Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor. Appl Catal B-Environ 237:708–720. https://doi.org/10.1016/j.apcatb.2018.06.034

    Article  CAS  Google Scholar 

  49. Nyquist RA, Nagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York

    Book  Google Scholar 

  50. Bielanski A, Malecka A, Kubelkova, (1989) Infrared study of the thermal decomposition of heteropolyacids of the series H3+xPMo12–xVxO40. J Chem Soc Faraday Trans 1(85):2847–2856. https://doi.org/10.1039/F19898502847

    Article  Google Scholar 

  51. Mansour AN (1994) Characterization of LiNiO2 by XPS. Surf Sci Spectra 3:279–286. https://doi.org/10.1116/1.1247757

    Article  CAS  Google Scholar 

  52. Jichang Lu, Luo Y, He D et al (2020) An exploration into potassium containing MoS2 active phases and its transformation process over MoS2 based materials for producing methanethiol. Catal Today 339:93–104. https://doi.org/10.1016/j.cattod.2019.01.012

    Article  CAS  Google Scholar 

  53. Cabello CI, Botto IL, Gabriezo F, Gonzales MG, Thomas HJ (2000) γ-Al2O3-supported XMo6 Anderson heteropolyoxomolybdates: adsorption studies for X = TeVI, AlIII, CoIII, CrIII and NiII by DR spectroscopy and TPR analysis. Ads Sci Technol 18:591–608. https://doi.org/10.1260/0263617001493657

    Article  CAS  Google Scholar 

  54. Baba T, Watanabe E, Ono Y (1983) Generation of acidic sites in metal salts of heteropoly acids. J Phys Chem 87:2406–2411. https://doi.org/10.1021/j100236a033

    Article  CAS  Google Scholar 

  55. Harris S, Chianelli RR (1986) Catalysis by transition metal sulfides: a theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides. J Catal 98:17–31. https://doi.org/10.1016/0021-9517(86)90292-7

    Article  CAS  Google Scholar 

  56. Kaluža L, Jirátová K, Tyuliev G et al (2018) Hydrodesulfurization NiMo catalysts over gamma-alumina prepared mechanochemically. React Kinet Mech Catal 125:319–337. https://doi.org/10.1007/s11144-018-1436-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Hana Šnajdaufová for the characterization of porous structure of catalysts. The authors are grateful for the support of the mobility project of the Czech and Bulgarian Academies of Sciences (Project Nos. BAS-20-01 and BAS-23-01).

Funding

This study is supported by the mobility project of the Czech and Bulgarian Academies of Sciences (Project Nos. BAS-20-01 and BAS-23-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Květa Jirátová.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 509 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluža, L., Jirátová, K., Spojakina, A.A. et al. The Effect of Lithium on NiMo/Al2O3 Hydrotreating Catalysts Prepared from Heteropolycompounds. Catal Lett 154, 430–447 (2024). https://doi.org/10.1007/s10562-023-04315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04315-0

Keywords

Navigation