Skip to main content
Log in

Effects of Synthesis Procedures on Pt–Sn Alloy Formation and Their Catalytic Activity for Propane Dehydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, we improved the conventional sequential impregnation synthetic method for preparing Pt–Sn/SiO2 catalysts for propane dehydrogenation. Three different synthesis procedures (Pt calcination (PC), co-calcination (CC) and direct reduction (DR)) were performed and examined for catalytic dehydrogenation of propane. The results shows that the synthesis procedures had a notable influence on the activities of the supported Pt–Sn bimetallic catalysts. Co-calcination method mainly produces Pt1Sn1 alloy nanoparticles over Pt–Sn/SiO2_CC, which was totally inactive in propane dehydrogenation. Pt calcination resulted in the coexistence of Pt0.84Sn0.16, Pt3Sn1, Pt1Sn1 on SiO2. Pt–Sn/SiO2_PC exhibited the medium activity. Direct reduction caused the formation of Pt3Sn alloy nanoparticle. Pt–Sn/SiO2_DR displayed the best catalytic performances among the studied catalysts, with 27% of propane conversion and 99% of selectivity towards propylene. These results in the present work indicated that the beneficial role of Sn requires the suitable catalyst preparation procedures. Direct reduction of Pt–Sn/SiO2 as prepared can afford more homogenous active Pt3Sn1 alloy on Pt–Sn/SiO2_DR. The procedure is simple in operation and much suitable for industrially catalyst preparation. PtxSny (x/y ≥ 3) with face-centered cubic structure are much active than Pt1Sn1 alloy with hexagonal structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Vora BV (2012) Development of dehydrogenation catalysts and processes. Top Catal 55(19–20):1297–1308

    Article  CAS  Google Scholar 

  2. Dong S, Altvater NR, Mark LO, Hermans I (2021) Assessment and comparison of ordered & non-ordered supported metal oxide catalysts for upgrading propane to propylene. Appl Catal a-Gen. https://doi.org/10.1016/j.apcata.2021.118121

    Article  Google Scholar 

  3. Dai YH, Gao X, Wang QJ, Wan XY, Zhou CM, Yang YH (2021) Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 50(9):5590–5630

    Article  CAS  PubMed  Google Scholar 

  4. Carter JH, Bere T, Pitchers JR, Hewes DG, Vandegehuchte BD, Kiely CJ, Taylor SH, Hutchings GJ (2021) Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chem 23(24):9747–9799

    Article  CAS  Google Scholar 

  5. Wang T, Li GM, Cui XJ, Abild-Pedersen F (2021) Identification of earth-abundant materials for selective dehydrogenation of light alkanes to olefins. P Natl Acad Sci USA. https://doi.org/10.1073/pnas.2024666118

    Article  Google Scholar 

  6. Ahmad MS, Cheng CK, Bhuyar P, Atabani AE, Pugazhendhi A, Chi NTL, Witoon T, Lim JW, Juan JC (2021) Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process—a review. Fuel. https://doi.org/10.1016/j.fuel.2020.118851

    Article  Google Scholar 

  7. Galvis HMT, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. Acs Catal 3(9):2130–2149

    Article  Google Scholar 

  8. Capurso T, Stefanizzi M, Torresi M, Camporeale SM (2022) Perspective of the role of hydrogen in the 21st century energy transition. Energ Convers Manage. https://doi.org/10.1016/j.enconman.2021.114898

    Article  Google Scholar 

  9. Berstad D, Gardarsdottir S, Roussanaly S, Voldsund M, Ishimoto Y, Neksa P (2022) Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis. Renew Sust Energ Rev. https://doi.org/10.1016/j.rser.2021.111772

    Article  Google Scholar 

  10. Li CY, Wang GW (2021) Dehydrogenation of light alkanes to mono-olefins. Chem Soc Rev 50(7):4359–4381

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Chang X, Sun GD, Zhang TT, Xu YY, Wang Y, Pei CL, Gong JL (2021) Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 50(5):3315–3354

    Article  CAS  PubMed  Google Scholar 

  12. Motagamwala AH, Almallahi R, Wortman J, Igenegbai VO, Linic S (2021) Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373(6551):217

    Article  CAS  PubMed  Google Scholar 

  13. Jameel MS, Aziz AA, Dheyab MA (2020) Green synthesis: proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Process Synth 9(1):386–398

    Article  Google Scholar 

  14. Sun JY, Zhang JR, Fu HY, Wan HQ, Wan YQ, Qu XL, Xu ZY, Yin DQ, Zheng SR (2018) Enhanced catalytic hydrogenation reduction of bromate on Pd catalyst supported on CeO2 modified SBA-15 prepared by strong electrostatic adsorption. Appl Catal B-Environ 229:32–40

    Article  CAS  Google Scholar 

  15. Keels JM, Chen X, Karakalos S, Liang CH, Monnier JR, Regalbuto JR (2018) Aqueous-phase hydrogenation of succinic acid using bimetallic Ir-Re/C catalysts prepared by strong electrostatic adsorption. Acs Catal 8(7):6486–6494

    Article  CAS  Google Scholar 

  16. Kim Y, Xu SC, Park J, Dadlani AL, Vinogradova O, Krishnamurthy D, Orazov M, Lee DU, Dull S, Schindler P, Han HS, Wang ZX, Graf T, Schladt TD, Mueller JE, Sarangi R, Davis R, Viswanathan V, Jaramillo TF, Higgins DC, Prinz FB (2022) Improving intrinsic oxygen reduction activity and stability: atomic layer deposition preparation of platinum-titanium alloy catalysts. Appl Catal B-Environ. https://doi.org/10.1016/j.apcatb.2021.120741

    Article  Google Scholar 

  17. Fonseca J, Lu JL (2021) Single-atom catalysts designed and prepared by the atomic layer deposition technique. Acs Catal 11(12):7018–7059

    Article  CAS  Google Scholar 

  18. Escorcia NJ, LiBretto NJ, Miller JT, Li CW (2020) Colloidal synthesis of well-defined bimetallic nanoparticles for nonoxidative alkane dehydrogenation. Acs Catal 10(17):9813–9823

    Article  CAS  Google Scholar 

  19. Witzke RJ, Chapovetsky A, Conley MP, Kaphan DM, Delferro M (2020) Nontraditional catalyst supports in surface organometallic chemistry. Acs Catal 10(20):11822–11840

    Article  CAS  Google Scholar 

  20. Docherty SR, Rochlitz L, Payard PA, Coperet C (2021) Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 50(9):5806–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichenberger S, Marzun G, Muhler M, Barcikowski S (2019) Perspective of surfactant-free colloidal nanoparticles in heterogeneous catalysis. ChemCatChem 11(18):4489–4518

    Article  CAS  Google Scholar 

  22. Stagg SM, Querini CA, Alvarez WE, Resasco DE (1997) Isobutane dehydrogenation on Pt-Sn/SiO2 catalysts: effect of preparation variables and regeneration treatments. J Catal 168(1):75–94

    Article  CAS  Google Scholar 

  23. Aksoylu AE, Madalena M, Freitas A, Figueiredo JL (2000) Bimetallic Pt-Sn catalysts supported on activated carbon-I. the effects of support modification and impregnation strategy. Appl Catal a-Gen 192(1):29–42

    Article  CAS  Google Scholar 

  24. Tshabalala TE, Coville NJ, Anderson JA, Scurrell MS (2015) Dehydroaromatization of methane over Sn-Pt modified Mo/H-ZSM-5 zeolite catalysts: effect of preparation method. Appl Catal a-Gen 503:218–226

    Article  CAS  Google Scholar 

  25. Zhang YW, Zhou YM, Zhang SB, Zhou SJ, Sheng XL, Wang QL, Zhang C (2015) Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy. J Mater Sci 50(19):6457–6468

    Article  CAS  Google Scholar 

  26. Prakash N, Lee MH, Yoon S, Jung KD (2017) Role of acid solvent to prepare highly active PtSn/theta-Al2O3 catalysts in dehydrogenation of propane to propylene. Catal Today 293:33–41

    Article  Google Scholar 

  27. Yamada Y, Akita T, Ueda A, Shioyama H, Kobayashi T (2005) Instruments for preparation of heterogeneous catalysts by an impregnation method. Rev Sci Instrum. https://doi.org/10.1063/11938287

    Article  Google Scholar 

  28. Su XP, Yin FC, Huang MW, Li Z, Chen CT (2001) Thermodynamic assessment of the Pt-Sn system. J Alloy Compd 325(1–2):109–112

    Article  CAS  Google Scholar 

  29. Petkov V, Shastri S, Shan SY, Joseph P, Luo J, Zhong CJ, Nakamura T, Herbani Y, Sato S (2013) Resolving atomic ordering differences in group 11 nanosized metals and binary alloy catalysts by resonant high-energy X-ray diffraction and computer simulations. J Phys Chem C 117(42):22131–22141

    Article  CAS  Google Scholar 

  30. Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41(24):8163–8178

    Article  CAS  PubMed  Google Scholar 

  31. Uemura Y, Inada Y, Bando KK, Sasaki T, Kamiuchi N, Eguchi K, Yagishita A, Nomura M, Tada M, Iwasawa Y (2011) In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys Chem Chem Phys 13(35):15833–15844

    Article  CAS  PubMed  Google Scholar 

  32. Uemura Y, Inada Y, Bando KK, Sasaki T, Kamiuchi N, Eguchi K, Yagishita A, Nomura M, Tada M, Iwasawa Y (2011) Core-shell phase separation and structural transformation of Pt3Sn alloy nanoparticles supported on gamma-Al2O3 in the reduction and oxidation processes characterized by in situ time-resolved XAFS. J Phys Chem C 115(13):5823–5833

    Article  CAS  Google Scholar 

  33. Zhu J, Yang ML, Yu YD, Zhu YA, Sui ZJ, Zhou XG, Holmen A, Chen D (2015) Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. Acs Catal 5(11):6310–6319

    Article  CAS  Google Scholar 

  34. Monai M, Gambino M, Wannakao S, Weckhuysen BM (2021) Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 50(20):11503–11529

    Article  CAS  PubMed  Google Scholar 

  35. Wang YL, Hu P, Yang J, Zhu YA, Chen C (2021) C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 50(7):4299–4358

    Article  CAS  PubMed  Google Scholar 

  36. Wang JL, Chang X, Chen S, Sun GD, Zhou XH, Vovk E, Yang Y, Deng WY, Zhao ZJ, Mu RT, Pei CL, Gong JL (2021) On the role of Sn segregation of Pt-Sn catalysts for propane dehydrogenation. Acs Catal 11(8):4401–4410

    Article  CAS  Google Scholar 

  37. Gorey TJ, Zandkarimi B, Li GJ, Baxter ET, Alexandrova AN, Anderson SL (2020) Coking-resistant sub-nano dehydrogenation catalysts: PtnSnx/SiO2 (n=4, 7). Acs Catal 10(8):4543–4558

    Article  CAS  Google Scholar 

  38. Liu LC, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P, Calvino JJ, Corma A (2020) Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 391:11–24

    Article  CAS  Google Scholar 

  39. Srinath NV, Longo A, Poelman H, Ramachandran RK, Feng JY, Dendooven J, Reyniers MF, Galvita VV (2021) In Situ XAS/SAXS study of Al2O3-coated PtGa catalysts for propane dehydrogenation. Acs Catal 11(18):11320–11335

    Article  CAS  Google Scholar 

  40. Cesar LG, Yang C, Lu Z, Ren Y, Zhang GH, Miller JT (2019) Identification of a Pt3Co surface intermetallic alloy in Pt–Co propane dehydrogenation catalysts. Acs Catal 9(6):5231–5244

    Article  CAS  Google Scholar 

  41. Cybulskis VJ, Bukowski BC, Tseng HT, Gallagher JR, Wu ZW, Wegener E, Kropf AJ, Ravel B, Ribeiro FH, Greeley J, Miller JT (2017) Zinc promotion of platinum for catalytic light alkane dehydrogenation: insights into geometric and electronic effects. Acs Catal 7(6):4173–4181

    Article  CAS  Google Scholar 

  42. Cui SL, Lynn M, Napolitano RE (2021) Experimental investigation and thermodynamic modeling of the binary Pt-Sn system. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.157064

    Article  Google Scholar 

  43. Yang ML, Zhu YA, Zhou XG, Sui ZJ, Chen D (2012) First-principles calculations of propane dehydrogenation over PtSn catalysts. Acs Catal 2(6):1247–1258

    Article  CAS  Google Scholar 

  44. Deng LD, Miura H, Shishido T, Wang Z, Hosokawa S, Teramura K, Tanaka T (2018) Elucidating strong metal-support interactions in Pt-Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. J Catal 365:277–291

    Article  CAS  Google Scholar 

  45. Deng L, Shishido T, Teramura K, Tanaka T (2014) Effect of reduction method on the activity of Pt-Sn/SiO2 for dehydrogenation of propane. Catal Today 232:33–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (52106144, 51922045, 52036003), and Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (GCP202102). We appreciate the support from the Analytical and Testing Center at Huazhong University of Science & Technology. Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China

Funding

Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (Grant No. GCP202102), Data Center of Management Science, National Natural Science Foundation of China—Peking University (Grant Nos. 51922045, 52036003, 52106144)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Liu, X., Wu, Z. et al. Effects of Synthesis Procedures on Pt–Sn Alloy Formation and Their Catalytic Activity for Propane Dehydrogenation. Catal Lett 153, 3665–3677 (2023). https://doi.org/10.1007/s10562-022-04263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04263-1

Keywords

Navigation