Skip to main content

Advertisement

Log in

First-Principles Calculations on the HER Performance of TiO2 Nanosheet with Passivated Codoping

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Using first-principles calculations, this paper reports a systematic research on HER performance enhancing of LNS-TiO2 by passivated codoping. Six codoping systems, Ti17O35CrC, Ti17O35MoC, Ti17O35WC, Ti17O35VN, Ti17O35NbN and Ti17O35TaN are studied. Results show that the energy band can be tuned by the codoping donor–acceptor pairs. The energy band performance of Ti17O35WC should be the best in HER process for its tiny CBM change and small band gap. Besides, the hydrogen adsorption ability of LNS-TiO2 in HER process can also be tuned by the codoping pairs. The hydrogen adsorption performance of Ti17O35TaN should be the best for its ∆GH* is close to zero. In a word, Ti17O35WC and Ti17O35TaN have their own advantages as catalysts in HER process, and their exact HER efficiency is waiting to be obtained in the future experiments. In general, this passivated codoping LNS-TiO2 represents a novel kind of material. Research in this paper can enrich the theoretical knowledge of HER field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  CAS  PubMed  Google Scholar 

  3. Lu S, Yang S, Hu X, Liang Z, Guo Y, Xue Y, Cui H, Tian J (2019) Fabrication of TiO2 nanoflowers with bronze (TiO2(B))/ anatase heterophase junctions for efficient photocatalytic hydrogen production. Int J Hydrogen Energy 44:24398–24406

    Article  CAS  Google Scholar 

  4. Shi J, Ji Q, Liu Z, Zhang Y (2016) Recent advances in controlling syntheses and energy related applications of MX2 and MX2/ graphene heterostructures. Adv Energy Mater 6:1600459

    Article  Google Scholar 

  5. Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45:715–752

    Article  CAS  PubMed  Google Scholar 

  6. Chen D, Chen W, Ma L, Ji G, Chang K, Lee JY (2014) Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Mater Today 17:184–193

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  8. Eivari HA, Ghasemi SA, Tahmasbi H, Rostami S, Faraji S, Rasoulkhani R, Goedecker S, Amsler M (2017) Two-dimensional hexagonal sheet of TiO2. Chem Mater 29:8594–8603

    Article  CAS  Google Scholar 

  9. Zhou W, Umezawa N, Ma R, Sakai N, Ebina Y, Sano K, Liu M, Ishida Y, Aida T, Sasaki T (2018) Spontaneous direct band gap, high hole mobility, and huge exciton energy in atomic-thin TiO2 nanosheet. Chem Mater 30:6449–6457

    Article  CAS  Google Scholar 

  10. Sakai N, Ebina Y, Takada K, Sasaki T (2004) Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc 126:5851–5858

    Article  CAS  PubMed  Google Scholar 

  11. Yuan J, Wang C, Liu Y, Wu P, Zhou W (2018) Tunable photocatalytic HER activity of single-layered TiO2 nanosheets with transition-metal doping and biaxial strain. J Phys Chem C 123:526–533

    Article  Google Scholar 

  12. Ida S, Kim N, Ertekin E, Takenaka S, Ishihara T (2015) Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J Am Chem Soc 137:239–244

    Article  CAS  PubMed  Google Scholar 

  13. Yuan J, Liu Y, Bo T, Zhou W (2020) Activated HER performance of defected single layered TiO2 nanosheet via transition metal doping. Int J Hydrogen Energy 45:2681–2688

    Article  CAS  Google Scholar 

  14. Gai Y, Li J, Li S, Xia J, Wei S (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402

    Article  PubMed  Google Scholar 

  15. Ahn KS, Yan Y, Shet S, Deutsch T, Turner J, Al-Jassim M (2007) Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl Phys Lett 91:231909

    Article  Google Scholar 

  16. Huda MN, Yan Y, Wei SH, Al-Jassim M (2008) Electronic structure of ZnO:GaN compounds: asymmetric bandgap engineering. Phys Rev B 78:195204

    Article  Google Scholar 

  17. Kresse G, Furthmller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  19. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys 50:17953–17979

    Article  Google Scholar 

  20. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B: Condens Matter Mater Phys 59:1758–1775

    Article  CAS  Google Scholar 

  21. Yin W, Tang H, Wei S, Al-Jassim MM, Turner J, Yan Y (2010) Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2. Phys Rev B 82:045106

    Article  Google Scholar 

  22. Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961

    Article  CAS  Google Scholar 

  23. Li J, Wei SH, Li SS, Xia JB (2006) Design of shallow acceptors in ZnO: First-principles band-structure calculations. Phys Rev B 74:081201

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China under Grant No. 11804082, 21905215, 11975173, 12035006 and Educational Commission of Hubei Province of China under Grant No. 2020CFB127. And the numerical calculation is supported by High-Performance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houmei Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Wang, C., Cai, X. et al. First-Principles Calculations on the HER Performance of TiO2 Nanosheet with Passivated Codoping. Catal Lett 153, 1278–1283 (2023). https://doi.org/10.1007/s10562-022-04080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04080-6

Keywords

Navigation