Skip to main content
Log in

WOx/C Heterogeneous Catalyst with Oxygen Vacancies and Deficient Brönsted Acid for Epoxidation of 1-Hexene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

WOx has good performance in olefin epoxidation, however, the presence of a large amount of Brönsted acid on WOx affects the selectivity of epoxy products. In this paper, broken carbon spheres (b-C spheres) treated with nitric acid were used as support to anchor WOx in dynamic solvothermal process. Based on GC–MS and GC-IR detection, the obtained WOx/C greatly increased selectivity of 1,2-epoxyhexane from 16.0% (pure WOx) to 92.1% in epoxidation of 1-hexene. The improvement of WOx performance is attributed to the reduction of Brönsted acid sites and electron cloud density after loading, which may all result from interaction between WOx and oxygen-containing functional groups of b-C spheres. Above changes not only effectively inhibit the hydrolysis of 1,2-epoxyhexane, but also are conducive to nucleophilic reaction of H2O2 to WOx, which is beneficial to the activation of H2O2. Finally, an epoxidation mechanism with oxygen vacancies as the main route under WOx/C catalysis is reasonably proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dissanayake S, Vora N, Achola L, Dang YL, He JK, Tobin Z, Lu XX, Mirich A, Gao PX, Suib SL (2021) Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation. Appl Catal B 282:119573–119584. https://doi.org/10.1016/j.apcatb.2020.119573

    Article  CAS  Google Scholar 

  2. Amini M, Haghdoost MM, Bagherzadeh M (2014) Monomeric and dimeric oxido-peroxido tungsten(VI) complexes in catalytic and stoichiometric epoxidation. Coord Chem Rev 268:83–100. https://doi.org/10.1016/j.ccr.2014.01.035

    Article  CAS  Google Scholar 

  3. Oyama ST (2008) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier Sci. https://doi.org/10.1016/B978-0-444-53188-9.X0001-6

    Article  Google Scholar 

  4. Li MM, Su Y, Xu T, Wang SQ, Bai J (2021) Template-free and in-situ growth of LZ-276&alkali-impregnated carbon nanofibers for efficient epoxidation of styrene. Mater Lett 303:130546–130550. https://doi.org/10.1016/j.matlet.2021.130546

    Article  CAS  Google Scholar 

  5. Wang X, You Q, Wu YS, Bi CY, Chen HY, Dai CY, Hao QQ, Zhang JB, Ma XX (2021) Tungsten-substituted silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous Mesoporous Mater 317:111028–111037. https://doi.org/10.1016/j.micromeso.2021.111028

    Article  CAS  Google Scholar 

  6. Askarinejad A, Bagherzadeh M, Morsali A (2010) Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl Surf Sci 256:6678–6682. https://doi.org/10.1016/j.apsusc.2010.04.069

    Article  CAS  Google Scholar 

  7. Zhang X, Li ZH, Wang J, Huang MY, Jiang YY (1999) Aerobic epoxidation of olefins catalyzed by MgO-polysilazane-metal complexes. Polym Adv Technol 10:483–486. https://doi.org/10.1002/(SICI)1099-1581(199908)10:8%3c483::AID-PAT893%3e3.0.CO;2-J

    Article  Google Scholar 

  8. Zhou YJ, Hu Y, Zhu ZW, Siewers V, Nielsen J (2018) Engineering 1-alkene biosynthesis and secretion by dynamic regulation in yeast. ACS Synth Biol 7:584–590. https://doi.org/10.1021/acssynbio.7b00338

    Article  CAS  PubMed  Google Scholar 

  9. Zhai P, Xu C, Gao R, Liu X, Li MZ, Li WZ, Fu XP, Jia CJ, Xie JL, Zhao M, Wang XP, Li YW, Zhang QW, Wen XD, Ma D (2016) Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew Chemie Int Ed 128:10056–10061. https://doi.org/10.1002/ange.201603556

    Article  Google Scholar 

  10. Lu Y, Yan Q, Han J, Cao BB, Street J, Fei Yu (2017) Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel 193:369–384. https://doi.org/10.1016/j.fuel.2016.12.061

    Article  CAS  Google Scholar 

  11. Wang J, Yang Y, Qing M, Bai YP, Wang H, Hu CX, Xiang HW, Yue RL (2020) Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: deciphering the role of H2O. J Fuel Chem Technol 48:63–74. https://doi.org/10.1016/s1872-5813(20)30004-9

    Article  Google Scholar 

  12. Wen X, Zhang YH, Liu CC, Hong JJ, Wei L, Chen Y, Li JL (2017) Performance of hierarchical ZSM-5 supported cobalt catalyst in the Fischer-Tropsch synthesis. J Fuel Chem Technol 45:950–955. https://doi.org/10.1016/s1872-5813(17)30045-2

    Article  CAS  Google Scholar 

  13. Yan WJ, Zhang GY, Yan H, Liu YB, Chen XB, Feng X, Jin X, Yao CH (2018) Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts. ACS Sustain Chem Eng 6:4423–4452. https://doi.org/10.1021/acssuschemeng.7b03101

    Article  CAS  Google Scholar 

  14. Hulea V, Dumitriu E (2004) Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies. Appl Catal A 277:99–106. https://doi.org/10.1016/j.apcata.2004.09.001

    Article  CAS  Google Scholar 

  15. Liang J, Zhang QH, Wu HL, Meng GY, Tang QH, Wang Y (2004) Iron-based heterogeneous catalysts for epoxidation of alkenes using molecular oxygen. Catal Commun 5:665–669. https://doi.org/10.1016/j.catcom.2004.08.010

    Article  CAS  Google Scholar 

  16. Thornburg NE, Thompson AB, Notestein JM (2015) Periodic trends in highly dispersed groups IV and V supported metal oxide catalysts for alkene epoxidation with H2O2. ACS Catal 5:5077–5088. https://doi.org/10.1021/acscatal.5b01105

    Article  CAS  Google Scholar 

  17. Bregante DT, Thornburg NE, Notestein JM, Flaherty DW (2018) Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts. ACS Catal 8:2995–3010. https://doi.org/10.1021/acscatal.7b03986

    Article  CAS  Google Scholar 

  18. Wu P, Tatsumi T, Komatsu T, Yashima T (2001) A novel Titanosilicate with MWW structure: II. catalytic properties in the selective oxidation of alkenes. J Catal 202:245–255. https://doi.org/10.1006/jcat.2001.3278

    Article  CAS  Google Scholar 

  19. Thornburg NE, Nauert SL, Thompson AB, Notestein JM (2016) Synthesis−structure–function relationships of silica-supported niobium(V) catalysts for alkene epoxidation with H2O2. ACS Catal 6:6124–6134. https://doi.org/10.1021/acscatal.6b01796

    Article  CAS  Google Scholar 

  20. Louloudi M, Kolokytha C, Hadjiliadis N (2002) Alkene epoxidation catalysed by binuclear manganese complexes. J Mol Catal A Chem. https://doi.org/10.1016/S1381-1169(01)00411-3

    Article  Google Scholar 

  21. Salehi SRF (2015) Green oxidation of olefins and methyl phenyl sulfide with hydrogen peroxide catalyzed by an oxovanadium(IV) Schiff base complex encapsulated in the nanopores of zeolite-Y. J Iran Chem Soc 12:309–316. https://doi.org/10.1007/s13738-014-0485-8

    Article  CAS  Google Scholar 

  22. Ini ZG (1999) Dual role of pyridine N-oxides in ruthenium porphyrin-catalyzed asymmetric epoxidation of olefins. Inorg Chem 38:1446–1449. https://doi.org/10.1021/ic981021l

    Article  Google Scholar 

  23. Soled EISL, Miseo S, Baumgartner JE, Gates WE, Fuentes GA, Meitzner GD (1996) Selective isomerization of alkanes on supported tungsten oxide acids. Stud Surf Sci Catal 101:533–542. https://doi.org/10.1016/S0167-2991(96)80264-3

    Article  Google Scholar 

  24. Rahman M, Sarmah T, Dihingia P, Verma R, Sharma S, Kirti SDN, Pandey LM, Kakati M (2022) Bulk synthesis of tungsten-oxide nanomaterials by a novel, plasma chemical reactor configuration, studies on their performance for waste-water treatment and hydrogen evolution reactions. Chem Eng J 428:131111–131122. https://doi.org/10.1016/j.cej.2021.131111

    Article  CAS  Google Scholar 

  25. Amarante TR, Antunes MM, Valente AA, Almeida Paz FA, Pillinger M, Goncalves IS (2015) Crystal structure and catalytic behavior in olefin epoxidation of a one-dimensional tungsten oxide/bipyridine hybrid. Inorg Chem 54:9690–9703. https://doi.org/10.1021/acs.inorgchem.5b00928

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Jiang Y, Zhu Z, Hou Z (2021) Selective oxidation of glycerol over different shaped WO3 supported Pt NPs. Mol Catal. https://doi.org/10.1016/j.mcat.2021.111545

    Article  Google Scholar 

  27. Ghosh S, Acharyya SS, Kumar M, Bal R (2015) One-pot preparation of nanocrystalline Ag-WO3 catalyst for the selective oxidation of styrene. RSC Adv 5:37610–37616. https://doi.org/10.1039/c5ra03803k

    Article  CAS  Google Scholar 

  28. Zhang MR, Singh V, Hu XF, Ma XY, Lu JK, Zhang C, Wang JP, Niu JY (2019) Efficient olefins epoxidation on ultrafine H2O-WOx nanoparticles with spectroscopic evidence of intermediate species. ACS Catal 9:7641–7650. https://doi.org/10.1021/acscatal.9b01226

    Article  CAS  Google Scholar 

  29. Maheswari R, Pachamuthu MP, Ramanathan A, Subramaniam B (2014) Synthesis, characterization, and epoxidation activity of tungsten-incorporated SBA-16 (W-SBA-16). Ind Eng Chem Res 53:18833–18839. https://doi.org/10.1021/ie501784c

    Article  CAS  Google Scholar 

  30. Gao RH, Yang XL, Dai WL, Le YY, Li HX, Fan KN (2008) High-activity, single-site mesoporous WO3-MCF materials for the catalytic epoxidation of cycloocta–1,5–diene with aqueous hydrogen peroxide. J Catal 256:259–267. https://doi.org/10.1016/j.jcat.2008.03.017

    Article  CAS  Google Scholar 

  31. Song JJ, Huang ZF, Pan L, Zou JJ, Zhang XW, Wang L (2015) Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal 5:6594–6599. https://doi.org/10.1021/acscatal.5b01522

    Article  CAS  Google Scholar 

  32. Zhang HY, Huang CL, Tao RT, Zhao YF, Chen S, Sun ZY, Liu ZM (2012) One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance. J Mater Chem 22:3354–3359. https://doi.org/10.1039/c1jm15726d

    Article  CAS  Google Scholar 

  33. Jie B, Yun S-H, Rhee HK (2000) Epoxidation of nhexene and cyclohexene over Titaniumcontaining catalysts. Korean J Chem Eng 17:76–80. https://doi.org/10.1007/bf02789257

    Article  Google Scholar 

  34. Liu Y, Li KX, Sun GH (2010) Effect of precursor preoxidation on the structure of phenolic resin-based activated carbon spheres. J Phys Chem Solids 71:453–456. https://doi.org/10.1016/j.jpcs.2009.12.009

    Article  CAS  Google Scholar 

  35. Deng QJ, Liu HX, Zhou YY, Luo ZB, Wang YM, Zhao ZY, Yang R (2021) N-doped three-dimensional porous carbon materials derived from bagasse biomass as an anode material for K-ion batteries. J Electroanal Chem 899:115668–115677. https://doi.org/10.1016/j.jelechem.2021.115668

    Article  CAS  Google Scholar 

  36. Lou ZZ, Zhu MS, Yang XG, Zhang Y, Whangbo MH, Li BJ, Huang BB (2018) Continual injection of photoinduced electrons stabilizing surface plasmon resonance of elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl Catal B 226:10–15. https://doi.org/10.1016/j.apcatb.2017.12.023

    Article  CAS  Google Scholar 

  37. Thiyagarajan K, Muralidharan M, Sivakumar K (2017) Defects induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J Supercond Nov Magn 31:117–125. https://doi.org/10.1007/s10948-017-4184-4

    Article  CAS  Google Scholar 

  38. Gotic M, Popovic S, Music MI (2000) Synthesis of tungsten trioxide hydrates and their structural properties. Mater Sci Eng B 77(193):201. https://doi.org/10.1016/S0921-5107(00)00488-8

    Article  Google Scholar 

  39. Wang HX, Ding RM, Wang CH, Ren XB, Wang LC, Lv BL (2017) Iron cation-induced biphase symbiosis of h-WO3/o-WO3·0.33H2O and their crystal phase transition. CrystEngComm 19:3980–3986. https://doi.org/10.1039/c7ce00774d

    Article  CAS  Google Scholar 

  40. Daniel MF, Desbat B, Lassègues J, Gerand B, Figlarz M (1987) Infrared and raman study of WO3 tungsten trioxides and WO3, xHzO tungsten rioxide hydrates. J Solid State Chem 67:235–247

    Article  CAS  Google Scholar 

  41. Zheng Y, Chen G, Yu YG, Zhou YS, He F (2016) Synthesis of carbon doped WO3·0.33H2O hierarchical photocatalyst with improved photocatalytic activity. Appl Surf Sci 362:182–190. https://doi.org/10.1016/j.apsusc.2015.11.115

    Article  CAS  Google Scholar 

  42. Chang J, Waclawik ER (2012) Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities. CrystEngComm 14:4041–4048. https://doi.org/10.1039/c2ce25154j

    Article  CAS  Google Scholar 

  43. Lei QF, Wang C, Dai WL, Wu GJ, Guan NJ, Hunger M, Li LD (2021) Tandem Lewis acid catalysis for the conversion of alkenes to 1,2diols in the confined space of bifunctional TiSn-Beta zeolite. Chin J Catal 42:1176–1184. https://doi.org/10.1016/s1872-2067(20)63734-2

    Article  CAS  Google Scholar 

  44. Tang B, Dai WL, Wu GJ, Guan NJ, Li LD, Hunger M (2014) Improved postsynthesis strategy to Sn-beta zeolites as lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal 4:2801–2810. https://doi.org/10.1021/cs500891s

    Article  CAS  Google Scholar 

  45. He J, Wu P, Wu YC, Li HP, Jiang W, Xun SH, Zhang M, Zhu WS, Li HM (2017) Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustain Chem Eng 5:8930–8938. https://doi.org/10.1021/acssuschemeng.7b01741

    Article  CAS  Google Scholar 

  46. Shima H, Tatsumi T, Kondo JN (2010) Direct FT-IR observation of oxidation of 1hexene and cyclohexene with H2O2 over TS-1. Microporous Mesoporous Mater 135:13–20. https://doi.org/10.1016/j.micromeso.2010.06.005

    Article  CAS  Google Scholar 

  47. Ayla EZ, Potts DS, Bregante DT, Flaherty DW (2021) Alkene epoxidations with H2O2 over groups 4–6 metal-Substituted BEA Zeolites: reactive intermediates, reaction pathways, and linear free-energy relationships. ACS Catal 11:139–154. https://doi.org/10.1021/acscatal.0c03394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (Grant. YLU-DNL Fund 2021017), Research Project of Shanxi Scholarship Council of China (No. 2020-196), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No. 2021-K10), Innovation Academy for Green Manufacture CAS (No. IAGM2020C10), Shanxi Province Science Foundation for Youths (201901D211583, 20210302124625), Doctoral Start-up Foundation of Shanxi Province (SQ2019006), Natural Science Foundation of Shanxi Province (No. 20210302123006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixiang Wang, Zhong Liu or Baoliang Lv.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Wang, H., Shi, J. et al. WOx/C Heterogeneous Catalyst with Oxygen Vacancies and Deficient Brönsted Acid for Epoxidation of 1-Hexene. Catal Lett 153, 1180–1192 (2023). https://doi.org/10.1007/s10562-022-04054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04054-8

Keywords

Navigation