Skip to main content

Advertisement

Log in

Synergy of Various Defects in CoAl-Layered Double Hydroxides Photocatalyzed CO2 Reduction: A First-Principles Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Defect engineering is accepted as an efficient strategy for tuning the electronic structure and enhancing photocatalytic performance of layered double hydroxides (LDHs), an emerging family of two-dimensional photocatalysts, in reducing CO2 to hydrocarbons. Herein, we systematically investigate how the different types of structural defects influence electronic behavior, band edge position and Gibbs free energy barrier of CoAl-LDHs by density functional theory plus U (DFT + U) method. Our calculations indicate that CoAl-LDHs with Al defects exhibits stronger CO2 absorption capacity and narrower band gap comparing perfect CoAl-LDHs, and CoAl-LDHs with hydroxyl (–OH) defects reduce band edge down to − 1.397 V by harvesting electrons around Co atom. Furthermore, CoAl-LDHs with mixed defects of –OH and Al presents a potential synergy in photocatalytic reduction of CO2, whose calculated Gibbs free energies imply the optimal pathway for reducing CO2 to CH4 to be \({\text{CO}}_{{2}} \, \to \,*{\text{COOH}}\, \to \,*{\text{CO}}\, \to \,*{\text{CHO}}\, \to \,*{\text{CH}}_{{2}} {\text{O}}\, \to \,*{\text{CH}}_{{3}} {\text{O}}\, \to \,*{\text{CH}}_{{3}} {\text{OH}}\, \to \,*{\text{CH}}_{{3}} \, \to \,{\text{CH}}_{{4}}\) through altering the potential-determining step and lowering the Gibbs free energy barrier from 0.452 to 0.203 eV. Our achievement valuably predicts catalytic performance of CoAl-LDHs with single and mixed defects in photocatalytic CO2 reduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yakir D (2011) Environ Res Lett 6:034007

    Article  Google Scholar 

  2. Tasleem S, Tahir M (2021) Energy Fuels 35:9727–9746

    Article  CAS  Google Scholar 

  3. Garbe J, Albrecht T, Levermann A, Donges JF (2020) Nature 585:538

    Article  CAS  PubMed  Google Scholar 

  4. Bodman RW, Rayner PJ, Karoly DJ (2013) Nat Clim Change 3:725–729

    Article  CAS  Google Scholar 

  5. Chang XX, Wang T, Gong JL (2016) Energy Environ Sci 9:2177–2196

    Article  CAS  Google Scholar 

  6. Datchi F, Giordano VM, Munsch P, Saitta AM (2009) Phys Rev Lett 103:185701

    Article  PubMed  Google Scholar 

  7. Hutchison JE, Richards RF (2015) J Thermophys Heat Transf 13:25–32

    Article  Google Scholar 

  8. Fu JW, Jiang KX, Qiu XQ, Yu JG, Liu M (2020) Mater Today 32:222–243

    Article  CAS  Google Scholar 

  9. Zhang BH, Jiang YZ, Gao MX, Ma TY, Sun WP, Pan HG (2020) Nano Energy 80:05504

    Google Scholar 

  10. Prabhu P, Jose V, Lee JM (2020) Adv Funct Mater 30:1910768

    Article  CAS  Google Scholar 

  11. Zhang L, Chen LG, Xia SJ, Ge YL, Wang C, Feng HJ (2020) Int J Heat Mass Tranf 148:119025

    Article  CAS  Google Scholar 

  12. Komiyama M, Li YJ (2004) Japanese J Appl Phys 43:4584–4587

    Article  CAS  Google Scholar 

  13. Hatamie A, Khan A, Golabi M, Turner APF, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S, Nur O, Willander M (2015) Langmuir 31:10913–10921

    Article  CAS  PubMed  Google Scholar 

  14. Mishra M, Chun DM (2015) Appl Catal A 498:126–141

    Article  CAS  Google Scholar 

  15. Zhukovskii YF, Piskunov S, Lisovski O, Bocharov D, Evarestov RA (2017) Isr J Chem 7:461–476

    Article  Google Scholar 

  16. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectocatalysis. Acc Chem Res 46:1900–1909

    Article  CAS  PubMed  Google Scholar 

  17. Gregoire B (2012) Ruby C carteret C. Cryst Growth Des 12:4324–4333

    CAS  Google Scholar 

  18. Tasleem S, Tahir M (2021) Int J Hydrogen Energy 46(40):20995–21012

    Article  CAS  Google Scholar 

  19. Barbosa ACD, Fonseca CG, Wypych F, Leitao AA (2020) New J Chem 44:10137–10145

    Article  CAS  Google Scholar 

  20. Liu XM, Fan X, Huang H, Lin HP, Gao JZ (2020) J Colloid Interface Sci 587:385–392

    Article  PubMed  Google Scholar 

  21. Wang XX, Yang Y, Diao LC, Tang Y, He F, Liu EZ, He CN, Shi CS, Li JJ, Sha JW, Ji SH, Zhang P, Ma LY, Zhao NQ (2018) ACS Appl Mater Interfaces 10:35145–35153

    Article  CAS  PubMed  Google Scholar 

  22. Gao R, Yan DP (2017) Nano Res 11:1883–1894

    Article  Google Scholar 

  23. Saber O, Aljaafari A, Alomair HA, Alshoaibi A (2019) ChemistrySelect 4:4293–4300

    Article  CAS  Google Scholar 

  24. Hao XJ, Tan L, Xu YQ, Wang ZL, Wang X, Bai S, Ning CJ, Zhao JW (2020) Zhao YF Song YF. Ind Eng Chem Res 59:3008–3015

    Article  CAS  Google Scholar 

  25. Moraes PIR, Wypych F, Leitao AA (2019) J Phys Chem C 123:9838–9845

    Article  CAS  Google Scholar 

  26. Han XX, Yang JZ, Han BY, Sun W, Zhao CF, Lu YX, Li Z, Ren J (2017) Int J Hydrogen Energy 42:177–192

    Article  CAS  Google Scholar 

  27. Dou YB, Zhang ST, Pan T, Xu SM, Zhou AW, Pu M, Yan H, Han JB, Wei M, Evans DG, Duan X (2015) Adv Func Mater 25:2243–2249

    Article  CAS  Google Scholar 

  28. Wu YJ, Gong YY, Liu JH, Chen TY, Liu Q, Zhu YT, Niu LY, Li C, Liu XJ, Sun CQ, Xu SQ (2020) J Alloy Compd 831:154723

    Article  CAS  Google Scholar 

  29. Mosey N, Liao PL, Carter EA (2008) J Chem Phys 129:014103

    Article  PubMed  Google Scholar 

  30. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) Phys Rev B 70:235121

    Article  Google Scholar 

  31. Li PS, Wang MY, Duan XX, Zheng LR, Cheng XP, Zhang YF, Kuang Y, Ma Q, Feng ZX, Liu W, Sun XM (2019) Nat Commun 10:1711

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang Y, Guo JQ, Li XL, Wu G, Mu MM, Yin XH (2022) Sol Energy 231:705–715

    Article  CAS  Google Scholar 

  33. Song YF, Tan L, Xu SM, Wang ZL, Xu YQ, Wang X, Hao XJ, Bai S, Ning CJ, Wang Y, Zhang WK, Jo YK, Hwang SJ, Cao XZ, Zheng XZ, Yan H, Zhao YF, Duan HY (2019) Angew Chem 58:11860–11867

    Article  Google Scholar 

  34. Ouyang TW, Fan WY, Guo JQ, Zheng YN, Yin XH, Shen YL (2020) Phys Chem Chem Phys 22:10305–10313

    Article  CAS  PubMed  Google Scholar 

  35. Delley B (2020) J Chem Phys 113:7756–7764

    Article  Google Scholar 

  36. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, HasnipJ P, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  37. Xu SM, Pan T, Dou YB, Yan H, Zhang ST, Ning FY, Shi WY, Wei M (2015) J Phys Chem C 119:18823–18834

    Article  CAS  Google Scholar 

  38. Ropo M, Kokko K, Vitos L (2008) Phys Rev B 77:195445

    Article  Google Scholar 

  39. Wang X, Wang Z, Bai Y, Tan L, Xu Y, Hao X, Wang J, Mahadi AH, Zhao Y, Zheng L, Song YF (2019) J Energy Chem 46:1–7

    Article  Google Scholar 

  40. Xu SM, Yan H, Wei M (2017) J Phys Chem C 121:2683–2695

    Article  CAS  Google Scholar 

  41. Wang C, Liu XM (2019) ZhangM, Geng Y, Zhao L, Li YG, Su ZM. ACS Sustain Chem Eng 7:14102–14110

    Article  CAS  Google Scholar 

  42. Wang YL, Tian Y, Yan LK, Su ZM (2018) J Phys Chem C 122:7712–7719

    Article  CAS  Google Scholar 

  43. Cao XM, Burch R, Hardacre C, Hu P (2011) Catal Today 165:71–79

    Article  CAS  Google Scholar 

  44. Min Pu (2008) Liu YH, Liu LY, Dong XZ, He J, David GE. J Phys Chem Solids 69:1084–1087

    Google Scholar 

  45. Radha AV, Kamath PV, Shivakumara C (2007) J Phys Chem B 111:3411–3418

    Article  CAS  PubMed  Google Scholar 

  46. Wu CF, Liu L, Xu RP, Zhang KQ, Zhen CM, Ma L, Hou DL (2021) Mater Sci Eng B 263:114886

    Article  CAS  Google Scholar 

  47. Li JY, Yan P, Li KL, You JJ, Wang H, Cui W, Cen WL, Chu YH, Dong F (2019) J Mater Chem A 7:17014–17021

    Article  CAS  Google Scholar 

  48. Khan AA, Tahir M, Mohamed AR (2022) Chem Eng J 433:133693

    Article  CAS  Google Scholar 

  49. Khan AA, Tahir M (2021) Energy Fuels 35(10):8922–8943

    Article  Google Scholar 

  50. Ji YF, Luo Y (2016) ACS Catal 6:2018–2025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We genuinely appreciate the financial support by the National Natural Science Foundation of China (NSFC, Grant No. 21776220) and the Key Project of Tianjin Natural Science Foundation (Grant No. 19JCZDJC37600) and Training Project of Innovation Team of Colleges and Universities in Tianjin (TD13-5020) and sported by the open foundation of State Key Laboratory of Chemical Engineering (Grant No. SKL-ChE-20B05). We also acknowledge the Beijing National Supercomputing Center for providing the computational resources and Materials Studio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manman Mu, Wenyuan Fan or Xiaohong Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Shen, H., Wu, G. et al. Synergy of Various Defects in CoAl-Layered Double Hydroxides Photocatalyzed CO2 Reduction: A First-Principles Study. Catal Lett 153, 933–944 (2023). https://doi.org/10.1007/s10562-022-04038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04038-8

Keywords

Navigation