Skip to main content
Log in

Visible Light Photocatalysis on Magnetically Recyclable Fe3O4/Cu2O Nanostructures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Magnetically recyclable visible light photocatalysts for the degradation of critical organic pollutants are an urgent industrial requirement. Nonetheless, one component photocatalysts frequently suffer from photo corrosion and recombination issues. Constructing composites of a photocatalytic magnetic phase with a visible range semiconductor could solve both problems. The current article investigates the visible light photocatalytic effectiveness of starch stabilized Fe3O4/Cu2O nanostructures for photocatalytic degradation of p-nitrophenol (PNP) and methyl orange (MO). A stage-wise co-precipitation protocol was employed to prepare these nanocomposites. Mott-Schottky plots of these nanocomposites exhibited positive and negative slope parts, confirming the formation of a p-n heterojunction. Such a coupling of p-type Cu2O with n-type starch functionalized Fe3O4 resulted in a better photocatalyst with improved photostability. Both PNP and MO degradation followed zero-order kinetics under photocatalytic conditions. The nanocomposites demonstrated appreciably better visible light photocatalytic properties along with excellent recyclability.

Graphical Abstract

Schematic representation of the mechanism proposed for explaining the photocatalytic Fenton degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fortuny A, Bengoa C, Font J, Fabrega A (1999) Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. J Hazard Mater 64:181–193. https://doi.org/10.1016/S0304-3894(98)00245-3

    Article  CAS  PubMed  Google Scholar 

  2. St G, Christoskova MS, Georgieva M (2001) Low-temperature iron-modified cobalt oxide system Part 2. Catalytic oxidation of phenol in aqueous phase. Appl Catal A Gen 208:243–249. https://doi.org/10.1016/S0926-860X(00)00710-9

    Article  Google Scholar 

  3. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  4. Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167:560–566. https://doi.org/10.1016/j.jhazmat.2009.01.024

    Article  CAS  PubMed  Google Scholar 

  5. Dohnal V, Fenclova D (1995) Air-water partitioning and aqueous solubility of phenols. J Chem Eng Data 40(2):478–483. https://doi.org/10.1021/je00018a027

    Article  CAS  Google Scholar 

  6. Environmental Protection Agency (2000) US Release and pollution prevention report

  7. Shaoqing Y, Jun H, Jianlong W (2010) Radiation-induced catalytic degradation of p-nitrophenol (PNP) in the presence of TiO2 nanoparticles. Radiat Phys Chem 79:1039–1046. https://doi.org/10.1016/j.radphyschem.2010.05.008

    Article  CAS  Google Scholar 

  8. Khatamian M, Divband B, Jodaei A (2012) Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Mater Chem Phys 134:31–37. https://doi.org/10.1016/j.matchemphys.2012.01.091

    Article  CAS  Google Scholar 

  9. Zarei A, Hedayatinasab F, H. R.-Vahidian, (2020) Photocatalytic degradation of nitro-aromatic explosives using visible-light-activated WO3: Optimization and catalyst modification. Prog. Sustain, Environ. https://doi.org/10.1002/ep.13386

    Book  Google Scholar 

  10. Martίnez CLT, Kho R, Mian OI, Mehra RK (2001) Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS Nanocrystals. J. Colloid. Interf. Sci. 240:525–532. https://doi.org/10.1006/jcis.2001.7684

    Article  CAS  Google Scholar 

  11. Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W (2020) One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J 390:124522. https://doi.org/10.1016/j.cej.2020.124522

    Article  CAS  Google Scholar 

  12. Yang R, Zhong S, Zhang L, Liu B (2020) PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Sep Purif Technol 235:116270. https://doi.org/10.1016/j.seppur.2019.116270

    Article  CAS  Google Scholar 

  13. Wang Y, Ding K, Xu R, Yu D, Wang W, Gao P, Liu B (2020) Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. J Clean Prod 247:119108. https://doi.org/10.1016/j.jclepro.2019.119108

    Article  CAS  Google Scholar 

  14. Yang R, Dong F, You X, Liu M, Zhong S, Zhang L, Liu B (2019) Facile synthesis and characterization of interface charge transfer heterojunction of Bi2MoO6 modified by Ag/AgCl photosensitive material with enhanced photocatalytic activity. Mater Lett 252:272–276. https://doi.org/10.1016/j.matlet.2019.06.006

    Article  CAS  Google Scholar 

  15. Wang Y, Yu D, Wang W, Gao P, Zhong S, Zhang L, Zhao Q, Liu B (2020) Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Sep Purif Technol 239:116562. https://doi.org/10.1016/j.seppur.2020.116562

    Article  CAS  Google Scholar 

  16. Zhang H, Yu D, Wang W, Gao P, Zhang L, Zhong S, Liu B (2019) Construction of a novel BON-Br-AgBr heterojunction photocatalysts as a direct Z-scheme system for efficient visible photocatalytic activity. Appl Surf Sci 497:143820. https://doi.org/10.1016/j.apsusc.2019.143820

    Article  CAS  Google Scholar 

  17. Liu B, Lin L, Yu D, Sun J, Zhu Z, Gao P, Wang W (2018) Construction of fiber-based BiVO4/SiO2/reduced graphene oxide (RGO) with efficient visible light photocatalytic activity. Cellulose 25:1089–1101. https://doi.org/10.1007/s10570-017-1628-8

    Article  CAS  Google Scholar 

  18. Lv D, Zhang D, Liu X, Liu Z, Hu L, Pu X, Ma H, Li D, Dou J (2016) Magnetic NiFe2O4/BiOBr composites: One-pot combustion synthesis and enhanced visible-light photocatalytic properties. Sep Purif Technol 158:302–307. https://doi.org/10.1016/j.seppur.2015.12.032

    Article  CAS  Google Scholar 

  19. Shao Z, Zeng T, He Y, Zhang D, Pu X (2019) A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem Eng J 359:485–495. https://doi.org/10.1016/j.cej.2018.11.163

    Article  CAS  Google Scholar 

  20. Rusevova K, Kopinke FD, Georgi A (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. J Hazard Mater 241–242:433–440. https://doi.org/10.1016/j.jhazmat.2012.09.068

    Article  CAS  PubMed  Google Scholar 

  21. Houa L, Zhang Q, Jérôme F, Duprez D, Zhang H, Royer S (2014) Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl Catal Environ 144:739–749. https://doi.org/10.1016/j.apcatb.2013.07.072

    Article  CAS  Google Scholar 

  22. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  23. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200. https://doi.org/10.1021/ar9001069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hongping H, Zhong Y, Liang X, Wei T, Jianxi Z, Wang CY (2015) Natural Magnetite: an efficient catalyst for the degradation of organic contaminant. Sci Rep 5(1):1–10. https://doi.org/10.1038/srep10139

    Article  CAS  Google Scholar 

  25. Hou Y, Wang Y, Yuan H, Chen H, Chen G, Shen J, Li L (2016) The enhanced catalytic degradation of SiO2/Fe3O4/C@TiO2 photo-Fenton system on p-nitrophenol. Res Nanopart. https://doi.org/10.1007/s11051-016-3656-y

    Article  Google Scholar 

  26. Qin Y, Zhang H, Tong Z, Song Z, Chen N (2017) A facile synthesis of Fe3O4@SiO2@ZnO with superior photocatalytic performance of 4-nitrophenol. J Environ Chem Eng 5(3):2207–2213. https://doi.org/10.1016/j.jece.2017.04.036

    Article  CAS  Google Scholar 

  27. Huang L, Peng F, Yu H, Wang H (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11(1):129–138. https://doi.org/10.1016/j.solidstatesciences.2008.04.013

    Article  CAS  Google Scholar 

  28. Yang J, Li Z, Zhao C, Wang Y, Liu X (2014) Facile synthesis of Ag–Cu2O composites with enhanced photocatalytic activity. Mater Res Bull 60:530–546. https://doi.org/10.1016/j.materresbull.2014.08.011

    Article  CAS  Google Scholar 

  29. Ai Z, Zhang L, Lee S, Ho W (2009) Interfacial hydrothermal synthesis of Cu@Cu2O core−shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C 113(49):20896–20902. https://doi.org/10.1021/jp9083647

    Article  CAS  Google Scholar 

  30. Lu B, Liu A, Wu H, Shen Q, Zhao T, Wang J (2016) Hollow Au–Cu2O core-shell nanoparticles with geometry-dependent optical properties as efficient plasmonic photocatalysts under visible light. Langmuir 32(12):3085–3094. https://doi.org/10.1021/acs.langmuir.6b00331

    Article  CAS  PubMed  Google Scholar 

  31. Gong H, Zhang Y, Cao Y, Luo M, Feng Z, Yang W, Liu K, Cao H, Yan H (2018) Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance. Appl Catal B Environ 237:309–317. https://doi.org/10.1016/j.apcatb.2018.05.086

    Article  CAS  Google Scholar 

  32. Kaviyarasan K, Vinoth V, Sivasankar T, Asiri AM, Wu JJ, Anandan S (2019) Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu2O@TiO2 heterojunction nanocomposites. Ultrason Sonochem 51:223–229. https://doi.org/10.1016/j.ultsonch.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  33. Wu S-C, Tan C-S, Huang MH (2017) Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O–ZnO heterostructures. Adv Funct Mater 27:1604635. https://doi.org/10.1002/adfm.201604635

    Article  CAS  Google Scholar 

  34. Jiang D, Xue J, Wu L, Zhou W, Zhang Y, Li X (2017) Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes: Effects of CuO morphology. Appl Catal B Environ 211:199–204. https://doi.org/10.1016/j.apcatb.2017.04.034

    Article  CAS  Google Scholar 

  35. Li G, Zhang W, Hou J, Li T, Li P, Wang Y, Liu G, Wang K (2020) Enhanced visible light photochemical activity and stability of MoS2/Cu2O nanocomposites by tunable heterojunction. Mater Today Commun 23:100933. https://doi.org/10.1016/j.mtcomm.2020.100933

    Article  CAS  Google Scholar 

  36. Singh PN, Tiwary D, Sinha I (2015) Starch-functionalized magnetite nanoparticles for hexavalent chromium removal from aqueous solutions. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1061453

    Article  Google Scholar 

  37. Radoń A, Drygała A, Hawełek Ł, Łukowiec D (2017) Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater Charact 131:148–156. https://doi.org/10.1016/j.matchar.2017.06.034

    Article  CAS  Google Scholar 

  38. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart R (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  39. Sreedhar B, Chattopadhyay DK, Karunakar MSH, Sastry ARK (2006) Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J Appl Polym Sci 101:25–34. https://doi.org/10.1002/app.23145

    Article  CAS  Google Scholar 

  40. Luo Z, Cheng W, Chen H, Fu X, Peng X, Luo F, Nie L (2013) Preparation and properties of enzyme-modified cassava starch−zinc complexes. J Agric Food Chem 61:4631–4638. https://doi.org/10.1021/jf4016015

    Article  CAS  PubMed  Google Scholar 

  41. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322–11330. https://doi.org/10.1103/PhysRevB.38.11322

    Article  CAS  Google Scholar 

  42. A. Tumuluri, K. L. Naidu and K. C. J. Raju (2014) Band gap determination using Tauc’s plot for LiNbO3 thin films, Int. J. Chem Tech Res. 6(6): 3353–3356, http://sphinxsai.com/2014/vol6_6_ICMCT/1/(3353-3356)ICMCT14.

  43. Furukawa S, Miyasato T (1988) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726. https://doi.org/10.1103/PhysRevB.38.5726

    Article  CAS  Google Scholar 

  44. Chen Q, Tong R, Chen X, Xue Y, Xie Z, Kuang Q, Zheng L (2018) Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution, Catal. Sci Technol 8:1296–1303. https://doi.org/10.1039/C7CY02310C

    Article  CAS  Google Scholar 

  45. Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodríguez HG, Álvarez-Contreras L, Arriaga LG (2010) Development of Pd and Pd–Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J Power Sources 195:461–465. https://doi.org/10.1016/j.jpowsour.2009.08.014

    Article  CAS  Google Scholar 

  46. Shim J, Lee J, Ye Y, Hwang J, Kim S-K, Tae-Hoon Lim U, Wiesner, and J. Lee, (2012) One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. ACS Nano 6(8):6870–6881. https://doi.org/10.1021/nn301692y

    Article  CAS  PubMed  Google Scholar 

  47. Alla SK, Verma AD, Kumar V, Mandal RK, Sinha I, Prasad NK (2016) Solvothermal synthesis of CuO–MgO nanocomposite particles and their catalytic applications. RSC Adv 6:61927–61933. https://doi.org/10.1039/C6RA03762C

    Article  CAS  Google Scholar 

  48. Guo S, Zhang G, Guo Y, Yu JC (2013) Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60:437–444. https://doi.org/10.1016/j.carbon.2013.04.058

    Article  CAS  Google Scholar 

  49. Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G (2010) Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J Hazard Mater 176(1–3):569–574. https://doi.org/10.1016/j.jhazmat.2009.11.066

    Article  CAS  PubMed  Google Scholar 

  50. Ayodele OB, Hameed BH (2013) Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process. Appl Clay Sci 83–84:171–181. https://doi.org/10.1016/j.clay.2013.08.019

    Article  CAS  Google Scholar 

  51. Xiao Y, Deng Y, Huan W, Li J, Zhang J, Xing M (2019) Hollow-structured Fe2O3/Au/SiO2 nanorods with enhanced and recyclable photo-Fenton oxidation for the remediation of organic pollutants. Mater Today Chem 11:86–93. https://doi.org/10.1016/j.mtchem.2018.10.012

    Article  CAS  Google Scholar 

  52. Nayak P, Kumar S, Sinha I, Singh KK (2019) ZnO/CuO nanocomposites from recycled printed circuit board: preparation and photocatalytic properties. Environ Sci Pollut Res 26:16279–16288. https://doi.org/10.1007/s11356-019-04986-6

    Article  CAS  Google Scholar 

  53. Omri A, Hamza W, Benzina M (2020) Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst. J Photochem Photobiol A Chem 393:112444. https://doi.org/10.1016/j.jphotochem.2020.112444

    Article  CAS  Google Scholar 

  54. Wan D, Li W, Wang G, Lu L, Wei X (2017) Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst. Sci Total Environ 574:1326–1334. https://doi.org/10.1016/j.scitotenv.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  55. Devi LG, Kumar SG, Reddy KM, Munikrishnappa C (2009) Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J hazard Mater 164(2–3):459–467. https://doi.org/10.1016/j.jhazmat.2008.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shaili Pal acknowledges financial support (SRF) received from IIT (BHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Kumar, A., Kumar, S. et al. Visible Light Photocatalysis on Magnetically Recyclable Fe3O4/Cu2O Nanostructures. Catal Lett 152, 3259–3271 (2022). https://doi.org/10.1007/s10562-021-03893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03893-1

Keywords

Navigation