Skip to main content

Advertisement

Log in

Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Ni3P and C@Ni3P catalyst were prepared by temperature programmed reduction method and characterized by XRD, TEM, N2 adsorption–desorption, H2-chemisorption, FT-IR, XPS and thermogravimetric analysis. Their catalytic performance in the hydrogenation of furfurnal was investigated. The 97% furfural conversion and 96.3% furfuryl alcohol selectivity were obtained over C@Ni3P-1 catalyst at 160 °C and 1.4 MPa H2 for 4 h. Furthermore, C@Ni3P-1 catalyst showed a high stability in reusing experiments and the satisfactory hydrogenation performance for other substrates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li X, Jia P, Wang T (2016) ACS Catal 6:7621–7640

    Article  CAS  Google Scholar 

  2. Gao G, Sun P, Li Y, Wang F, Zhao Z, Qin Y, Li F (2017) ACS Catal 7:4927–4935

    Article  CAS  Google Scholar 

  3. Mariscal R, Mairelestorres P, Sádaba MO, López GM (2016) Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  4. Patel M, Zhang X, Kumar A (2016) Renew Sustain Energy Rev 53:1486–1499

    Article  CAS  Google Scholar 

  5. Walker TW, Motagamwala AH, Dumesic JA, Huber GW (2019) J Catal 369:518–525

    Article  CAS  Google Scholar 

  6. Sun P, Gao G, Zhao Z, Xia C, Li F (2016) Appl Catal B Environ 189:19–25

    Article  CAS  Google Scholar 

  7. Wu J, Gao G, Sun P, Long X, Li F (2017) ACS Catal 7:7890–7901

    Article  CAS  Google Scholar 

  8. Geng W, Li W, Liu L, Liu J, Liu L, Kong X (2020) Fuel 259:116267

    Article  CAS  Google Scholar 

  9. Deng TY, Xu GY, Fu Y (2020) Chin J Catal 41:404–414

    Article  CAS  Google Scholar 

  10. Cao XJ, Liu H, Wei JN, Tang X, Zeng XH, Sun Y, Lei TZ, Zhao G, Lin L (2019) Chin J Catal 40:192–203

    Article  CAS  Google Scholar 

  11. Li MS, Collado L, Cardenas-Lizana F, Keane MA (2018) Catal Lett 148:90–96

    Article  CAS  Google Scholar 

  12. Wu Z, Wang J, Wang S, Zhang Y, Ricardez SL, Wang G, Zhao B (2020) Green Chem 22:1432–1442

    Article  CAS  Google Scholar 

  13. Puthiaraj P, Kim K, Ahn W (2019) Catal Today 324:49–58

    Article  CAS  Google Scholar 

  14. Taylor MJ, Jiang L, Reichert J, Papageorgiou AC, Beaumont SK, Wilson K, Lee AF, Barth JV, Kyriakou G (2017) J Phys Chem C 121:8490–8497

    Article  CAS  Google Scholar 

  15. Ramirezbarria C, Isaacs MA, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I (2018) Appl Catal A Gen 563:177–184

    Article  CAS  Google Scholar 

  16. Babu GS, Rekha V, Francis S, Lingaiah N (2019) Catal Lett 149:2758–2766

    Article  CAS  Google Scholar 

  17. Ghashghaee M, Sadjadi S, Shirvani S, Farzaneh V (2017) Catal Lett 147:318–327

    Article  CAS  Google Scholar 

  18. Du H, Ma X, Jiang M, Yan P, Zhang ZC (2020) Appl Catal A Gen 598:117598

    Article  CAS  Google Scholar 

  19. Jiang P, Li X, Gao W, Wang X, Tang Y, Lan K, Wang B, Li R (2018) Catal Commun 111:6–9

    Article  CAS  Google Scholar 

  20. Kotbagi TV, Gurav HR, Nagpure AS, Chilukuri SV, Bakker MG (2016) RSC Adv 6:67662–67668

    Article  CAS  Google Scholar 

  21. Shi D, Yang Q, Peterson C, Lamichumblot A, Girardon J, Gribovalconstant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2019) Catal Today 334:162–172

    Article  CAS  Google Scholar 

  22. Hu F, Wang Y, Xu SQ, Zhang ZQ, Chen Y, Fan JD, Yuan H, Gao LJ, Xiao GM (2019) Catal Lett 149:2158–2168

    Article  CAS  Google Scholar 

  23. Du H, Ma X, Yan P, Jiang M, Zhao Z, Zhang ZC (2019) Fuel Process Technol 193:221–231

    Article  CAS  Google Scholar 

  24. Zhang Z, Tong X, Zhang H, Li Y (2018) Green Chem 20:3092–3100

    Article  CAS  Google Scholar 

  25. Lee Y, Oyama ST (2017) Appl Catal A Gen 548:103–113

    Article  CAS  Google Scholar 

  26. Bowker RH, Ilic B, Carrillo BA, Reynolds MA, Murray BD, Bussell ME (2014) Appl Catal A Gen 482:221–230

    Article  CAS  Google Scholar 

  27. Alvarezgalvan MC, Camposmartin JM, Fierro JL (2019) Catalysts 9:293

    Article  Google Scholar 

  28. Zhou L, Kong Y, Du Y, Wang J, Zhou Y (2010) Appl Surf Sci 256:7692–7695

    Article  CAS  Google Scholar 

  29. Chen J, Shi H, Li L, Li K (2014) Appl Catal B Environ 144:870–884

    Article  CAS  Google Scholar 

  30. Yu Z, Wang A, Liu S, Yao Y, Sun Z, Li X, Liu Y, Wang Y, Camaioni DM, Lercher JA (2019) Catal Today 319:48–56

    Article  CAS  Google Scholar 

  31. Yu Z, Wang Y, Liu S, Yao Y, Sun Z, Li X, Liu Y, Wang W, Wang A, Camaioni DM, Lercher JA (2018) Ind Eng Chem Res 57:10216–10225

    Article  CAS  Google Scholar 

  32. Yu Z, Mang F, Yao Y, Sun Z, Liu Y, Wang W, Wang A (2020) Ind Eng Chem Res 59:7416–7425

    Article  CAS  Google Scholar 

  33. Yu Z, Yao Y, Wang Y, Li Y, Sun Z, Liu Y, Shi C, Liu J, Wang W, Wang A (2021) J Catal 396:324–332

    Article  CAS  Google Scholar 

  34. Zhu J, Cao L, Li C, Zhao G, Zhu T, Hu W, Sun W, Lu Y (2019) ACS Appl Mater Interfaces 11:37635–37643

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Tang M, Chen J (2016) Appl Surf Sci 360:353–364

    Article  CAS  Google Scholar 

  36. Wang Y, Feng X, Yang S, Xiao L, Wu W (2020) J Nanopart Res 22:1–14

    Article  CAS  Google Scholar 

  37. Zhang H, Lu Y, Gu C, Wang X, Tu J (2012) CrystEngComm 14:7942–7950

    Article  CAS  Google Scholar 

  38. Waghmode BJ, Bhange SN, Unni SM, Patilb KR, Malkhede DD (2017) Sustain Energy Fuels 1:1329–1338

    Article  CAS  Google Scholar 

  39. Jin L, Xia H, Huang Z, Lv C, Wang J, Humphrey MG, Zhang C (2016) J Mater Chem A 4:10925–10932

    Article  CAS  Google Scholar 

  40. Wan X, Qian D, Ai L, Jiang J (2020) Ind Eng Chem Res 59:22040–22048

    Article  CAS  Google Scholar 

  41. Zhang Y, Tao H, Li J, Yang X (2020) Ionics 26:3377–3385

    Article  CAS  Google Scholar 

  42. Tian B, Tian B, Smith B, Scott MC, Lei Q, Hua R, Tian Y, Liu Y (2018) Proc Natl Acad Sci USA 115:4345–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang H, Xiao Q, Wang J, Yu X, Wang H, Zhang H, Chu PK (2017) npj 2D Mater Appl 1:1–8

    Article  Google Scholar 

  44. Ding L, Chen L, Ma ZH, Zhang XY, Zhang KX, Zhu GS, Yu ZZ, Deng JQ, Chen FM, Yan DL, Xue HR, Yu AB (2020) Electrochim Acta 357:136875

    Article  CAS  Google Scholar 

  45. Cui L, Li X, Zeng R, Li S, Han E, Song L (2017) Front Mater Sci 11:284–295

    Article  Google Scholar 

  46. Baggetto L, Dudney NJ, Veith GM (2013) Electrochim Acta 90:135–147

    Article  CAS  Google Scholar 

  47. Yu R, Lan T, Jiang J, Peng H, Liang R, Liu G (2020) J Leather Sci Eng 2:1–11

    Article  Google Scholar 

  48. Li Y, Li S, Wang Y, Wang J, Liu H, Liu X, Wang L, Liu X, Xue W, Ma N (2017) Phys Chem Chem Phys 19:11631–11638

    Article  CAS  PubMed  Google Scholar 

  49. Yu Z, Wang Y, Sun Z, Li X, Wang A, Camaionib DM, Lercher JA (2018) Green Chem 20:609–619

    Article  CAS  Google Scholar 

  50. Ren J, Wang JG, Li JF, Li YW (2007) J Fuel Chem Technol 35:458–464

    Article  CAS  Google Scholar 

  51. Wang T, Dong Z, Cai W, Wang Y, Fu T, Zhao B, Peng L, Ding W, Chen Y (2016) Chem Commun 52:10672–10675

    Article  CAS  Google Scholar 

  52. Deng J, Ren PJ, Deng DH, Bao XH (2015) Angew Chem Int Ed 54:2100–2104

    Article  CAS  Google Scholar 

  53. Mohamad N, Abd-Talib N, Yong TLK (2020) Mater Today Proc 31:116–121

    Article  CAS  Google Scholar 

  54. Ishikawa H, Sheng M, Nakata A, Nakajima K, Yamazoe S, Yamasaki J, Yamaguchi S, Mizugaki T, Mitsudome T (2021) ACS Catal 11:750–757

    Article  CAS  Google Scholar 

  55. Jaatinen S, Touronen J, Karinen R, Uusi-Kyyny P, Alopaeus V (2017) J Chem Thermodyn 112:1–6

    Article  CAS  Google Scholar 

  56. Fang WT, Riisager A (2021) Green Chem 23:670–688

    Article  CAS  Google Scholar 

  57. Shivhare A, Kumar A, Srivastava R (2021) ChemCatChem 13:59–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Key Research and Development Project, Intergovernmental International Science and Technology Innovation Cooperation Key Project (2018YFE0108800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linfei Xiao or Wei Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, Y., Zhang, H. et al. Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal Lett 152, 883–894 (2022). https://doi.org/10.1007/s10562-021-03680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03680-y

Keywords

Navigation