Skip to main content
Log in

Construction and Mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme Heterojunction with Enhanced Photocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new type of Ag3PO4/UiO-66-NH2 Z-scheme heterojunction nanocomposite with visible light catalytic activity was successfully prepared. The synthesis of the composite was confirmed by XRD, FT-IR, SEM, TEM, EDS, XPS. The Ag3PO4/UiO-66-NH2 Z-scheme heterojunction can effectively improve the utilization of visible light. The optimal Ag/U/1/4 composite has the highest degradation efficiency for methylene blue (MB, 30 mg/L) in 90 min (80%) and Norfloxacin (NOR, 10 mg/L) in 150 min (85%). The decrease of Nyquist radius and the enhancement of photocurrent response indicated that the combination of photogenerated electron–hole pair in Ag3PO4/UiO-66-NH2 composite material is significantly inhibited. N2 adsorption–desorption and zeta potential results indicated that biggish specific surface area and negative zeta potential value are more favorable for the adsorption of the cationic dye MB. The cyclic test verified the good stability of Ag3PO4/UiO-66-NH2 heterojunction material. Furthermore, the photocatalytic degradation mechanism of MB was discussed by introducing different traps to inhibit the possible active substances in the degradation process. This work testified that an efficient photocatalytic composite based on metal–organic frameworks can be used for the degradation of pollutants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma QL, Zhang HX, Guo RN, Cui YQ, Deng XY, Cheng XW, Xie MZ, Cheng QF, Li B (2017) J Taiwan Inst Chem Eng 80:176–183

    CAS  Google Scholar 

  2. Che HN, Che GB, Dong HJ, Hu W, Hu H, Liu CB, Li CM (2018) Appl Surf Sci 455:705–716

    CAS  Google Scholar 

  3. Liu RD, Li H, Duan LB, Shen H, Zhang Q, Zhao XR (2018) Appl Surf Sci 462:263–269

    CAS  Google Scholar 

  4. Zhong S, Wang BQ, Zhou H, Li CY, Peng XJ, Zhang SY (2019) J Alloy Compd 806:401–409

    CAS  Google Scholar 

  5. Turano E, Curcio S, De Paola M, Calabro V, Iorio G (2002) J Membr Sci 209:519–531

    CAS  Google Scholar 

  6. Coskun T, Demİr NM, Debİk E (2012) Fresenius Environ Bull 21:1158–1564

    CAS  Google Scholar 

  7. Kornboonraksa T, Lee HS, Lee SH, Chiemchaisri C (2009) Bioresour Technol 100:1963–1968

    CAS  PubMed  Google Scholar 

  8. Mbamba CK, Batstone DJ, Flores-Alsina X, Tait S (2015) Water Res 68:342–353

    PubMed  Google Scholar 

  9. Yan J, Yuan W, Liu J, Ye WZ, Lin JL, Xie JH, Huang X, Gao SS, Xie JH, Liu SN, Chen WZ, Zhang HG (2019) J Clean Prod 228:63–72

    CAS  Google Scholar 

  10. Karthik M, Manekar P, Nandy T (2010) Desalin Water Treat 24:190–201

    CAS  Google Scholar 

  11. Matamoros V, Salvadó V (2013) J Environ Manag 117:96–102

    CAS  Google Scholar 

  12. Zhao Y, Li X (2019) Sep Purif Technol 211:207–217

    CAS  Google Scholar 

  13. Dash RR, Balomajumder C, Kumar A (2008) J Hazard Mater 152:387–396

    CAS  PubMed  Google Scholar 

  14. Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Water Res 55:185–193

    CAS  PubMed  Google Scholar 

  15. Li XW, Mei QQ, Chen LB, Zhang HY, Dong B, Dai XH, He CQ, Zhou JL (2019) Water Res 157:228–237

    CAS  PubMed  Google Scholar 

  16. Yi H, Huang DL, Qin L, Zeng GM, Lai C, Cheng M, Ye SJ, Song B, Ren XY, Guo XY (2018) Appl Catal B 239:408–424

    CAS  Google Scholar 

  17. Guo F, Shi WL, Li MY, Shi Y, Wen HB (2019) Sep Purif Technol 210:608–615

    CAS  Google Scholar 

  18. Cui YQ, Ma QL, Deng X, Meng Q, Cheng XW, Xie MZ, Li XL, Cheng QF, Liu HL (2017) Appl Catal B 206:136–145

    CAS  Google Scholar 

  19. Zhang Y, Zhou JB, Chen X, Feng QQ, Cai WQ (2019) J Alloy Compd 777:109–118

    CAS  Google Scholar 

  20. Wan SP, Ou M, Zhong Q, Wang XM (2019) Chem Eng J 358:1287–1295

    CAS  Google Scholar 

  21. Zhu JJ, Wu LB, Bu ZY, Jie SY, Li BG (2019) ACS Omega 4:3188–3197

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen LJ, Wu WM, Liang RW, Lin R, Wu L (2013) Nanoscale 5:9374–9382

    CAS  PubMed  Google Scholar 

  23. Xu XY, Chu C, Fu HF, Du XD, Wang P, Zheng WW, Wang CC (2018) Chem Eng J 350:436–444

    CAS  Google Scholar 

  24. Mu XX, Jiang JF, Chao FF, Lou YB, Chen JX (2018) Dalton Trans 47:1895–1902

    CAS  PubMed  Google Scholar 

  25. Shen LJ, Liang SJ, Wu WM, Liang RW, Wu L (2013) J Mater Chem A 1:11473–11482

    CAS  Google Scholar 

  26. Xu J, He S, Zhang HL, Huang JC, Lin HX, Wang XX, Long JL (2015) J Mater Chem A 3:24261–24271

    CAS  Google Scholar 

  27. Gu ZZ, Chen LY, Duan BH, Luo Q, Liu J, Duan CY (2016) Chem Commun 52:116–119

    CAS  Google Scholar 

  28. Zhu GL, Feng S, Feng SS, Zhang ZH (2019) Mater Lett 246:36–39

    CAS  Google Scholar 

  29. Zhao WY, Ding T, Wang YT, Wu MQ, Jin WF, Tian Y, Li XG (2019) Chin J Catal 40:1187–1197

    CAS  Google Scholar 

  30. Yang ZQ, Tong XW, Feng JN, He S, Fu ML, Niu XJ, Zhang TP, Liang H, Ding A, Feng XC (2019) Chemosphere 220:98–106

    CAS  PubMed  Google Scholar 

  31. Yan XH, Gao QX, Qin JL, Yang XF, Li Y, Tang H (2013) Ceram Int 39:9715–9720

    CAS  Google Scholar 

  32. Liu W, Shen J, Yang XF, Liu QQ, Tang H (2018) Appl Surf Sci 456:369–378

    CAS  Google Scholar 

  33. Wang H, Cui W, Dong XA, Li JY, Chen QS, Wang ZM, Sun YJ, Sheng JP, Zhou Y, Zhang Y, Dong F (2020) Chem Eng J 390:124609

    CAS  Google Scholar 

  34. Chen P, Liu HJ, Sun YJ, Li JY, Cui W, Wang LA, Zhang WD, Yuan XY, Wang ZM, Zhang YX, Dong F (2020) Appl Catal B 264:118545

    CAS  Google Scholar 

  35. Cui W, Chen LC, Sheng JP, Li JY, Wang H, Dong XA, Zhou Y, Sun YJ, Dong F (2020) Appl Catal B 262:118251

    CAS  Google Scholar 

  36. Shi WL, Guo F, Yuan SL (2017) Appl Catal B 209:720–728

    CAS  Google Scholar 

  37. Miao XL, Yue XY, Ji ZY, Shen XP, Zhou H, Liu MM, Xu KQ, Zhu J, Zhu GX, Kong LR, Shah SA (2018) Appl Catal B 227:459–469

    CAS  Google Scholar 

  38. Liu XW, Xu JJ, Ni ZY, Wang RC, You JH, Guo R (2019) Chem Eng J 356:22–33

    CAS  Google Scholar 

  39. Zhang R, Han Q, Li Y, Cai YF, Zhang TQ, Liu Y, Zhu XY (2019) J Alloy Compd 810:151868

    CAS  Google Scholar 

  40. Liu WH, Liu DD, Wang K, Yang XD, Hu XQ, Hu LS (2019) Nanoscale Res Lett 14:203

    PubMed  PubMed Central  Google Scholar 

  41. Li TF, Wei HR, Jia HZ, Xia TJ, Guo XT, Wang TC, Zhu LY (2019) ACS Sustain Chem Eng 7:4177–4185

    CAS  Google Scholar 

  42. Sofi FA, Majid K, Mehraj O (2018) J Alloy Compd 737:798–808

    CAS  Google Scholar 

  43. Abdelhameed RM, Tobaldi DM, Karmaoui M (2018) J Photochem Photobiol A 351:50–58

    CAS  Google Scholar 

  44. Wang ZW, Wang H, Zeng ZT, Zeng GM, Xu P, Xiao R, Huang DL, Chen XJ, He LW, Zhou CY, Yang Y, Wang ZX, Wang WJ, Xiong WP (2020) Appl Catal B 267:118700

    CAS  Google Scholar 

  45. Joubani MN, Zanjanchi MA, Sohrabnezhad Sh (2020) Adv Powder Technol 31:29–39

    Google Scholar 

  46. Zhou TH, Zhang GZ, Zhang HW, Yang H, Ma PJ, Li XT, Qiu XL, Liu G (2018) Catal Sci Technol 8:2402–2416

    CAS  Google Scholar 

  47. Jia MM, Feng Y, Liu S, Qiu JH, Yao JF (2017) J Membr Sci 539:172–177

    CAS  Google Scholar 

  48. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850–13851

    PubMed  Google Scholar 

  49. Fu LK, Wang SX, Lin G, Zhang LB, Liu QM, Zhou HH, Kang CX, Wan SY, Li HW, Wen S (2019) J Clean Prod 229:470–479

    CAS  Google Scholar 

  50. Zhang X, Zhang YF, Wang TC, Fan Z, Zhang GL (2019) RSC Adv 9:24802–24810

    CAS  Google Scholar 

  51. Hasan Z, Khan NA, Jhung SH (2016) Chem Eng J 284:1406–1413

    CAS  Google Scholar 

  52. Zhao PX, Li R, Wu WJ, Wang J, Liu JD, Zhang YT (2019) Compos B Eng 176:107208

    CAS  Google Scholar 

  53. Liu L, Qi YH, Lu JR, Lin SL, An WJ, Liang YH, Cui WQ (2016) Appl Catal B 183:133–141

    CAS  Google Scholar 

  54. Zhang N, Zhang XL, Gan CX, Zhang JY, Liu YF, Zhou M, Zhang C, Fang YZ (2019) J Photochem Photobiol A 376:305–315

    CAS  Google Scholar 

  55. Zhang XL, Zhang N, Gan CX, Liu YF, Chen L, Zhang C, Fang YZ (2019) Mater Sci Semicond Process 91:212–221

    CAS  Google Scholar 

  56. Han YD, Shi HL, Bai CP, Zhang LX, Wu JB, Meng H, Xu Y, Zhang X (2018) ChemistrySelect 3:8045–8050

    CAS  Google Scholar 

  57. Jin JF, Liu M, Feng LH, Wang HY, Wang YL, Nguyen TA, Wang YM, Lu JR, Li YM, Bao MT (2019) Sci Total Environ 695:133694

    CAS  PubMed  Google Scholar 

  58. Haque E, Lee J, Jang IT, Hwang YK, Chang J, Jegal J, Jhung SH (2010) J Hazard Mater 181:535–542

    CAS  Google Scholar 

  59. Wang YN, Guo LN, Zeng YQ, Guo HW, Wan SP, Ou M, Zhang SL, Zhong Q (2019) ACS Appl Mater Interfaces 34:30673–30681

    Google Scholar 

  60. Jia JK, Huang WX, Feng CS, Zhang Z, Zuojiao KC, Liu JX, Jiang CY, Wang YP (2019) J Alloy Compd 790:616–625

    CAS  Google Scholar 

  61. Jia JK, Jiang CY, Zhang XR, Li PJ, Xiong JX, Zhang Z, Wu T, Wang YP (2019) Appl Surf Sci 495:143524

    CAS  Google Scholar 

  62. Li BS, Lai C, Zeng GM, Lei Q, Yi H, Huang DL, Zhou CY, Liu XJ, Cheng M, Xu P, Zhang C, Huang FL, Liu SY (2018) ACS Appl Mater Interfaces 10:18824–18836

    CAS  PubMed  Google Scholar 

  63. He SJ, Rong QF, Niu HY, Cai YQ (2019) Appl Catal B 247:49–56

    CAS  Google Scholar 

  64. Huo Q, Qi XR, Li JS, Liu GQ, Ning Y, Zhang XB, Zhang BY, Fu YF, Liu SY (2019) Appl Catal B 255:117751

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant 51578295), and Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse (Nanjing University of Science and Technology), Qing Lan Project of Jiangsu Province. Additionally, we also appreciate Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and a project funded by the priority academic program development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, C., Jiang, C. et al. Construction and Mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme Heterojunction with Enhanced Photocatalytic Activity. Catal Lett 151, 734–747 (2021). https://doi.org/10.1007/s10562-020-03349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03349-y

Keywords

Navigation