Skip to main content
Log in

Oxidative Desulfurization of Dibenzothiophene Using Cobalt (II) Complexes with Substituted Salen-Type Ligands as Catalysts in Model Fuel Oil

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Three cobalt(II)-salen complexes (CoL1, CoL2 and CoL3) were synthesized via the reaction of the three tetradentate ligands as N,N′-ethylenebis(salicylimine) L1, N,N′-ethylenebis(3-tert-butylsalicylimine) L2 and N,N′-ethylenebis(3,5-di-tert-butylsalicylimine) L3, with a stoichiometric amount of cobalt(II) acetate tetrahydrate, respectively. All the three complexes were studied as oxidative desulfurization catalyst on dibenzothiophene taken in model fuel oil n-dodecane. The acetonitrile used as an extracting solvent and H2O2 as an oxidant. Comparatively CoL3 proved to be the best catalyst which showed the 76% DBT removal at the optimized conditions. The nth-order kinetic model is the best way to represent oxidation kinetics of complexes.

Graphic Abstract

This cobalt(II) Schiffs base complexes were studied as catalyst for oxidative desulfurization of dibenzothiphene (DBT) taken as model sulphur compounds in fuel model oil (n-dodecane) using H2O2 as oxidant and acetonitrile as extracting solvent for DBT sulfone in a batch experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali MF, Al-Malki A, Ahmed S (2009) Fuel Process Technol 90:536–544

    Article  CAS  Google Scholar 

  2. Yang RT, Hernández-Maldonado AJ, Yang FH (2003) Science 301:79–81

    Article  CAS  Google Scholar 

  3. Churchill DG, Bridgewater BM, Parkin G (2000) J Am Chem Soc 122:178–179

    Article  CAS  Google Scholar 

  4. Janak KE, Tanski JM, Churchill DG, Parkin G (2002) J Am Chem Soc 124:4182–4183

    Article  CAS  Google Scholar 

  5. Buccella D, Janak KE, Parkin G (2008) J Am Chem Soc 130:16187–16189

    Article  CAS  Google Scholar 

  6. Ganguly T, Das A, Jana M, Majumdar A (2018) Inorg Chem 57:11306–11309

    Article  CAS  Google Scholar 

  7. Ganguly T, Majumdar A (2020) Inorg Chem 59:4037–4048

    Article  CAS  Google Scholar 

  8. Guchhait S, Biswas D, Bhattacharya P, Chowdhury R (2005) Chem Eng J 112:145–151

    Article  CAS  Google Scholar 

  9. Zhang J, Zhao DS, Yang LY, Li YB (2010) Chem Eng J 156:528–531

    Article  CAS  Google Scholar 

  10. Lam V, Li GC, Song CJ, Chen JW, Fairbridge C, Hui R, Zhang J (2012) Fuel Process Technol 98:30–38

    Article  CAS  Google Scholar 

  11. Babich IV, Moulijn JA (2003) Fuel 82:607–631

    Article  CAS  Google Scholar 

  12. Srivastava VC (2012) RSC Adv 2:759–783

    Article  Google Scholar 

  13. Zhu W, Wang C, Li H, Wu P, Xun S, Jiang W, Chen Z, Zhao Z, Li H (2015) Green Chem 17:2464–2472

    Article  CAS  Google Scholar 

  14. Zhu J, Wu P, Chen L, He J, Wu Y, Wang C, Chao Y, Lu L, He M, Zhu W, Li H (2020) J Energy Chem 45:91–97

    Article  Google Scholar 

  15. Wu P, Wu Y, Chen L, He J, Hua M, Zhu F, Chu X, Xiong J, He M, Zhu W, Li H (2020) Chem Eng J 380:122526

    Article  CAS  Google Scholar 

  16. Rajendran A, Cui TY, Fan HX, Yang ZF, Feng J, Li WY (2020) J Mater Chem A 8:2246–2285

    Article  CAS  Google Scholar 

  17. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energ Fuel 14:1232–1239

    Article  CAS  Google Scholar 

  18. Komintarachat C, Trakarnpruk W (2006) Ind Eng Chem Res 45:1853–1856

    Article  CAS  Google Scholar 

  19. Garcia-Gutierrez JL, Fuentes GA, Hernandez-Teran ME, Murrieta F, Garcia P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Appl Catal Gen 334:336–373

    Article  Google Scholar 

  20. Silva G, Voth S, Szymanski P, Prokopchuk EM (2011) Fuel Process Technol 92:1656–1661

    Article  CAS  Google Scholar 

  21. Xu D, Zhu W, Li H, Zhang J, Zou F, Shi H, Yan Y (2009) Energy Fuels 23:5929–5933

    Article  CAS  Google Scholar 

  22. González-García O, Cedeño-Caero L (2009) Catal Today 148:42–48

    Article  Google Scholar 

  23. Anisimov AV, Fedorova EV, Lesnugin AZ, Senyavin VM, Aslanov LA, Rybakov VB, Tarakanova AV (2003) Catal Today 78:319–325

    Article  CAS  Google Scholar 

  24. Maurya MR, Arya A, Kumar A, Kuznetsov ML, Avecilla F, Pessoa JC (2010) Inorg Chem 49:6586–6600

    Article  CAS  Google Scholar 

  25. Maciuca A, Ciocan C, Dumitriu E, Fajula F, Hulea V (2008) Catal Today 138:33–37

    Article  CAS  Google Scholar 

  26. Ramírez-Verduzco LF, De los Reyes JA, Torres-Garcia E (2008) Ind Eng Chem Res 47:5353–5361

    Article  Google Scholar 

  27. Zhu W, Li H, Jiang X, Yan Y, Lu J, Xia J (2007) Energy Fuels 21:2514–2516

    Article  CAS  Google Scholar 

  28. Zhou XR, Chen X, Jin YQ, Markó EI (2012) Chem Asian J 7:2253–2257

    Article  CAS  Google Scholar 

  29. Zhou XR, Li J, WangN X, Jin K, Ma W (2009) Fuel Process Technol 90:317–323

    Article  CAS  Google Scholar 

  30. Murata S, Murata K, Kidena K, Nomura M (2004) Energy Fuels 18:116–121

    Article  CAS  Google Scholar 

  31. Rao TV, Krishna PM, Paul D, Nautiyal BR, Kumar J, Sharma YK, Nanoti SM, Sain B, Garg MO (2011) Pet Sci Technol 29:626–632

    Article  CAS  Google Scholar 

  32. Wang L, Li S, Cai H, Xu Y, Wu X, Chen Y (2012) Fuel 94:165–169

    Article  CAS  Google Scholar 

  33. Tripathi D, Negi H, Singh RK, Singh UP, Srivastava VC (2019) J Coord Chem 72(17):2982–2996

    Article  CAS  Google Scholar 

  34. Shankar G, Premkumar RR, Ramalingam SK (1986) Polyhedron 5:991–994

    Article  CAS  Google Scholar 

  35. ASTM D4294 (2016) Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry, ASTM International, West Conshohocken PA

  36. Wu X, Gorden AE (2009) Eur J Org Chem 2009:503–509

    Article  Google Scholar 

  37. Kumar S, Srivastava VC, Badoni RP (2014) Int J Chem React Eng 12:1–8

    Article  CAS  Google Scholar 

  38. Subbaramaiah V, Srivastava VC, Mall ID (2013) Ind Eng Chem Res 52(26):9021–9029

    Article  CAS  Google Scholar 

  39. Singh S, Srivastava VC, Gautam S (2016) Int J Chem React Eng 14:539–545

    Article  CAS  Google Scholar 

  40. Pandey S, Srivastava VC (2018) Pet Sci Technol 36:40–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DT carried out the experiment and drafted the manuscript; RKS helped in conceiving the idea and data interpretation.

Corresponding author

Correspondence to Deependra Tripathi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Singh, R.K. Oxidative Desulfurization of Dibenzothiophene Using Cobalt (II) Complexes with Substituted Salen-Type Ligands as Catalysts in Model Fuel Oil. Catal Lett 151, 713–719 (2021). https://doi.org/10.1007/s10562-020-03343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03343-4

Keywords

Navigation