Skip to main content
Log in

Synthesis and Benzene Hydroxylation Properties of Amino Substituted [FeFe]-Hydrogenase Model Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two novel, amino-substituted [FeFe]-hydrogenase model compounds were synthesized and characterized using IR, NMR, mass and UV–Vis spectroscopies as well as elemental analysis. The electrochemical properties (cyclic voltammetry) and catalytic performances of compounds 1 and 2 for the hydroxylation of benzene were investigated. The reduction peaks of compounds 1 and 2 were observed at − 1.93 V, which agrees with the value of the electron density of diiron centers. Compounds 1 and 2 nearly the same electron density around the Fe–Fe bond, but the position of –NH2 group on the pyridine ring largely influenced the stability. Compound 1 demonstrated a higher phenol yield (equal to 12.8%) than compound 2 (10.2%). The biomimetic catalyst formed by the 4-aminopyridine ligand with two iron nuclei, resembling an enzyme active site, had better stability and higher catalytic activity than the 2-aminopyridine derivative.

Graphic Abstract

Compared the catalytic performance of complexes 12, despite 1 and 2 have the same electron density around the Fe–Fe bond, the 4-aminopyridine derivative 1 (12.8%) was more stable and with better catalytic activity compared to 2-aminopyridine derivative 2 (10.2%)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen L, Xiang Y, Feng T (2012) Appl Organomet Chem 26:108

    Article  CAS  Google Scholar 

  2. Wang H, Wang C, Zhao M, Yang Y, Fang L, Wang Y (2018) Chem Eng Sci 177:399

    Article  CAS  Google Scholar 

  3. Kuznetsova NI, Kuznetsova LI, Likholobov VA, Pez GP (2005) Catal Today 99:193

    Article  CAS  Google Scholar 

  4. Zhong YK, Li GY, Zhu LF, Yan Y, Wu G, Hu CW (2007) J Mol Catal A 272:169

    Article  CAS  Google Scholar 

  5. Zhang B, Sun L (2019) Chem Soc Rev 48:2216

    Article  CAS  Google Scholar 

  6. Joseph JK, Singhal S, Jain SL, Sivakumaran R, Kumar B, Sain B (2009) Catal Today 141:211

    Article  CAS  Google Scholar 

  7. Liu M, Wang H, Zhu P, Wang J, Tan H, Zheng Z (2019) Catal Commun 129:105752

    Article  CAS  Google Scholar 

  8. Balducci L, Bianchi D, Bortolo R, D'Aloisio R, Ricci DM, Tassinari R, Ungarelli R (2003) Amgew Chem Int Ed 42:4937

    Article  CAS  Google Scholar 

  9. Kusakari T, Sasaki T, Iwasawa Y (2004) Chem Commun 8:992

    Article  Google Scholar 

  10. Xin H, Koekkoek A, Yang Q, Santen R, Li C, Hensen EJM (2009) Chem Commun 48:7590

    Article  Google Scholar 

  11. Xu B, Zhong W, Wei Z, Wang H, Liu J, Wu L, Feng Y, Liu X (2014) Dalton Trans 43:381

    Google Scholar 

  12. Bianchi D, Balducci L, Bortolo R, D'Aloisio R, Ricci M, Spanò M, Tassinari R, Tonini C, Ungarelli R (2007) Adv Synth Catal 349:979

    Article  CAS  Google Scholar 

  13. Xiao P, Wang Y, Kondo JN, Yokoi T (2018) Chem Lett 47:1112

    Article  CAS  Google Scholar 

  14. Wu L, Zhong W, Xu B, Wei Z, Liu X (2015) Dalton Trans 44:8013

    Article  CAS  Google Scholar 

  15. Krest CM, Onderko EL, Yosca TH, Calixto CJ, Karp FR, Livada J, Rittle J, Green TM (2013) J Biol Chem 288:17074

    Article  CAS  Google Scholar 

  16. Friedle S, Reisner E, Lippard SJ (2010) Chem Soc Rev 392:768

    Google Scholar 

  17. Costas M, Mehn MP, Jensen MP, Que L (2004) Chem Rev 104:939

    Article  CAS  Google Scholar 

  18. Ethel RD, Singleton ML, Darensbourg MY (2010) Amgew Chem Int Ed 49:8567–8569

    Article  Google Scholar 

  19. Camara JM, Rauchfuss TB (2011) J Am Chem Soc 133:8098

    Article  CAS  Google Scholar 

  20. Thammavongsy Z, Mercer IP, Yang JY (2019) Chem Commun 55:10342

    Article  CAS  Google Scholar 

  21. Dong Y, Niu X, Song W, Wang D, Chen L, Yuan F, Zhu Y (2016) Catalysts 67:4

    Google Scholar 

  22. Li B, Liu T, Singleton ML, Darensbourg MY (2009) Inorg Chem 48:8393

    Article  CAS  Google Scholar 

  23. Tshuva EY, Lippard SJ (2004) Chem Rev 35:987

    Article  Google Scholar 

  24. Baik MH, Newcomb M, Friesner RA, Lippard SJ (2003) Chem Rev 103:2385

    Article  CAS  Google Scholar 

  25. Cao JP, Zhao JX, Lu HX, Zhan S (2014) Transit Metal Chem 39:933

    Article  CAS  Google Scholar 

  26. Agarwal T, Kaur-Ghumaan S (2019) Coordin Chem Rev 397:188

    Article  CAS  Google Scholar 

  27. Wang YH, Zhang TY, Li B, Jiang S, Sheng L (2015) RSC Adv 5:29022

    Article  CAS  Google Scholar 

  28. Zhang X, Zhang T, Li B, Zhang G, Li H, Ma X, Wu W (2017) Rsc Adv 7:2934

    Article  Google Scholar 

  29. Wang X, Zhang TY, Yang QS, Jiang S, Li B (2014) Appl Organomet Chem 28:666

    Article  Google Scholar 

  30. Lee D, Lippard SJ (2002) Inorg Chem 41:2704

    Article  CAS  Google Scholar 

  31. Hai L, Zhang TY, Jiang S, Ma X, Wang D, Li B (2019) Catal Lett https://doi.org/10.1007/s10562-019-03060-7

    Article  Google Scholar 

  32. Song LC, Li CG, Ge JH, Yang ZY, Wang HT, Zhang J, Hu QM (2008) J Inorg Biochem 102:1973

    Article  CAS  Google Scholar 

  33. Song LC, Feng L, Guo YQ (2019) Dalton Trans 48:1443

    Article  CAS  Google Scholar 

  34. Feng YN, Xu FF, Chen RP, Wen N, Li ZH, Du SW (2012) J Organomet Chem 717:211

    Article  CAS  Google Scholar 

  35. Lin HM, Li JR, Mu C, Li A, Liu X, Zhao P, Li Y, Jiang Z, Wu H (2019) Appl Organomet Chem 33:5196

    Google Scholar 

  36. Capon JF, Ezzaher S, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J, Davin TJ, Mcgrady JE, Muir KW (2007) New J Chem 31:2052

    Article  CAS  Google Scholar 

  37. Zhang X, Ma X, Zhang T, Li B, Jiang S, Zhang G, Hai L, Wang J, Shao X (2018) Rsc Adv 8:42262

    Article  CAS  Google Scholar 

  38. Wang X, Zhang T, Yang Q, Jiang S, Li B (2015) Eur J Inorg Chem 5:817

    Article  Google Scholar 

Download references

Acknowledgements

The Natural Science Foundation of Shandong Province (ZR2019BF033 and ZR2019BB058); The Young Doctor Cooperative Foundation of Qilu University of Technology (Shandong Academy of Sciences) (81110361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, L. & Li, Y. Synthesis and Benzene Hydroxylation Properties of Amino Substituted [FeFe]-Hydrogenase Model Compounds. Catal Lett 150, 2879–2885 (2020). https://doi.org/10.1007/s10562-020-03197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03197-w

Keywords

Navigation