Skip to main content

Advertisement

Log in

Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

From the last two decades, white biotechnology, with particular reference to deploying enzyme bio-catalysis, has gained special research interest to valorize the bio-sources lignocellulosic biomass. In this context, ligninolytic enzymes from a white biotechnology background have tremendous potentialities to transform biomass following the green agenda. The enzyme-based white biotechnology is now considered a key endeavor of twenty-first century, as it offers socio-economic and environmental merits over traditional biotechnology, such as eco-friendlier processing conditions, no/limited use of harsh chemicals/reagents, high catalytic turnover, high yield, cost-effective ratio, low energy costs, green alternative of complex synthesis, renewability, reusability, and recyclability. Research efforts are underway, around the globe, to exploit naturally occurring biomass, as a green feedstock and low-cost substrates, to generate value-added bio-products, bio-fuels, and bio-energy. One core problem in developing an eco-friendlier and economical bioprocess is the pre-treatment of lignocellulosic biomass to entirely or partially remove the lignin barrier from cellulose fibers, thereby allowing the enzymes to access the cellulose fibers and generate the products of industrial interests. The entire process requires lignocelluloses deconstruction where ligninolytic enzymes in synergies with redox mediators systems have not explored much. The limited exploitation of ligninolytic enzymes with tremendous catalytic efficiencies has created a massive research gap that we have tried to cover herein. This review further insights the white biotechnology, also termed industrial biotechnology, which uses microorganisms and their unique enzyme system to facilitate the clean and sustainable deconstruction process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Science 337(6095):695–699

    CAS  PubMed  Google Scholar 

  2. Anastas PT, Zimmerman JB (2018) Curr Opin Green Sust Chem 13:150–153

    Google Scholar 

  3. De Bhowmick G, Sarmah AK, Sen R (2018) Bioresour Technol 247:1144–1154

    PubMed  Google Scholar 

  4. Carmona-Cabello M, Garcia IL, Leiva-Candia D, Dorado MP (2018) Curr Opin Green Sust Chem 14:67–79

    Google Scholar 

  5. Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H (2019) Biochem Eng J 151:107363

    CAS  Google Scholar 

  6. Xia J, Yu Y, Chen H, Zhou J, Tan Z, He S, Li X (2019) BioResources 14(3):6767–6780

    CAS  Google Scholar 

  7. Bozell JJ, Holladay JE, Johnson D, White JF (2007) Top Value Added Candidates from Biomass, Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin. Richland, WA: Pacific Northwest National Laboratory.

  8. Gosselink RJ, De Jong E, Guran B, Abächerli A (2004) Co-ordination network for lignin–standardization, production, and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20:121–129

    CAS  Google Scholar 

  9. Asgher M, Wahab A, Bilal M, Iqbal HMN (2016) Biocatal Agricult Biotechnol 6:195–201

    Google Scholar 

  10. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) J Exp Bot 60:441–452

    PubMed  Google Scholar 

  11. Paliwal R, Giri K, Rai JPN (2019) Microbial Ligninolysis: Avenue for Natural Ecosystem Management. In Biotechnology: Concepts, Methodologies, Tools, and Applications (pp. 1399–1423). IGI Global.

  12. Christopher LP, Band Y, Ji Y (2014) Front. Energy Res 2:12

    Google Scholar 

  13. Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2019) Curr Opin Biotechnol 56:179–186

    CAS  PubMed  Google Scholar 

  14. Dashtban M, Schraft H, Syed TA, Qin W (2010) Int J Biochem Mol Biol 1(1):36

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pérez J, Munoz-Dorado J, De la Rubia TDLR, Martinez J (2002) Int Microbiol 5(2):53–63

    PubMed  Google Scholar 

  16. Nishiyama Y, Langan P, Chanzy H (2002) J Am Chem Soc 124:9074–9082

    CAS  PubMed  Google Scholar 

  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Ind Eng Chem Res 48:3713–3729

    CAS  Google Scholar 

  18. Kuila A (ed) (2019) Sustainable Biofuel and Biomass: Advances and Impacts. CRC Press, Boca Raton

    Google Scholar 

  19. Abdel-Raheem A, Shearer CA (2002) Fungal Divers 11:1–19

    Google Scholar 

  20. Sun Y, Cheng JY (2002) Bioresour Technol 83(1):1–11

    CAS  PubMed  Google Scholar 

  21. Longe LF, Couvreur J, Leriche Grandchamp M, Garnier G, Allais F, Saito K (2018) ACS Sustain Chem Eng 6(8):10097–10107

    CAS  Google Scholar 

  22. Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Nat Prod Rep 28:1871–1960

    Google Scholar 

  23. Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:17–24

    CAS  Google Scholar 

  24. Agarwal UP, McSweeny JD, Ralph SA (2011) J Wood Chem Technol 31:324–344

    CAS  Google Scholar 

  25. Asgher M, Ahmad Z, Iqbal HMN (2013) Ind Crop Prod 44:488–495

    CAS  Google Scholar 

  26. Galbe M, Zacchi G (2002) Appl Microbiol Biotechnol 59:618–628

    CAS  PubMed  Google Scholar 

  27. Ferreira S, Gil N, Queiroz JA, Duarte AP, Domingues FC (2010) Bioresour Technol 101:7797–7803

    CAS  PubMed  Google Scholar 

  28. Bilal M, Asgher M, Iqbal HM, Ramzan M (2017) Waste Biomass Valori 8(7):2271–2281

    CAS  Google Scholar 

  29. Iglesias G, Bao M, Lamas J, Vega A (1996) Bioresour Technol 58:17–23

    CAS  Google Scholar 

  30. Sierra R, Granda C, Holtzapple MT (2009) Biotechnol Prog 25:323–332

    CAS  PubMed  Google Scholar 

  31. Park I, Kim I, Kang K, Sohnd H, Rhee I, Jin I, Jang H (2010) Process Biochem 45:487–492

    CAS  Google Scholar 

  32. Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X (2017) Renew Sust Ener Rev 82:436–447

    Google Scholar 

  33. Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN (2019) 3 Biotechnology 9(3): 92.

  34. Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, International D, Drive IP (2007) Biotechnol Bioeng 97:1028–1038

    Google Scholar 

  35. Ummalyma SB, Supriya RD, Sindhu R, Binod P, Nair RB, Pandey A, Gnansounou E (2019) Biological pretreatment of lignocellulosic biomass—Current trends and future perspectives. In: Second and Third Generation of Feedstocks (pp. 197–212). Elsevier, New York.

    Google Scholar 

  36. Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) J Microbiol 45:485–491

    CAS  PubMed  Google Scholar 

  37. Isroi MR, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) BioResources 6:5224–5259

    Google Scholar 

  38. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Ind. Appl., Second. Springer, Berlin, pp 319–340.

    Google Scholar 

  39. Lomascolo A, Record E, Herpoel G, Delattre M, Robert JL, Georis J, Dauvrin T, Sigoillot JC, Asther M (2003) J Appl Microbiol 94:618–624

    CAS  PubMed  Google Scholar 

  40. Baldrian P (2006) FEMS Microbiol Rev 30:215–242

    CAS  PubMed  Google Scholar 

  41. Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG (2008) J Biosci Bioeng 106:162–167

    CAS  PubMed  Google Scholar 

  42. Asgher M, Ijaz A, Bilal M (2016) Turk J Biochem 41(1):26–36

    CAS  Google Scholar 

  43. Asgher M, Khan SW, Bilal M (2016) Rom Biotechnol Lett 21(1):11133

    CAS  Google Scholar 

  44. Asgher M, Ramzan M, Bilal M (2016) Chin J Cataly 37(4):561–570

    CAS  Google Scholar 

  45. Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A (2005) Enzym Microb Technol 36(4):461–468

    CAS  Google Scholar 

  46. Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) J Mol Catal B Enzym 101:56–66

    CAS  Google Scholar 

  47. Bilal M, Nawaz MZ, Iqbal H, Hou J, Mahboob S, Al-Ghanim KA, Cheng H (2018) Protein Peptide Lett 25(2):108–119

    CAS  Google Scholar 

  48. Chowdhary P, Shukla G, Raj G, Ferreira LFR, Bharagava RN (2019) SN Appl Sci 1(1):45

    Google Scholar 

  49. Tien M, Kirk K (1983) Science 221:661–663

    CAS  PubMed  Google Scholar 

  50. Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Enyzm Microb Technol 11:322–328

    CAS  Google Scholar 

  51. Johansson T, Welinder KG, Nyman PO (1993) Arch Biochem Biophys 300:57–62

    CAS  PubMed  Google Scholar 

  52. Moilanen AM, Lundell T, Vares T, Hatakka A (1996) Appl Microbiol Biotechnol 45:792–799

    CAS  Google Scholar 

  53. Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Biosci Biotechnol Biochem 73:1793–1798

    CAS  PubMed  Google Scholar 

  54. Glumoff T, Harvey P, Molinari S, Goble M, Frank G, Palmer JM (1990) Eur J Biochem 187:515–520

    CAS  PubMed  Google Scholar 

  55. Tien M, Kirk TK (1988) Biomass, part B: Lignin, pectin and chitin. In: Wood WA, Kellog SC (eds) Methods in enzymology. Academic Press, San Diego, pp 238–249

    Google Scholar 

  56. Furukawa T, Bello FO, Horsfall L (2014) Front Biol 9:448–471

    CAS  Google Scholar 

  57. Martinez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A (2005) Int Microbiol 8:195–204

    CAS  PubMed  Google Scholar 

  58. Kirk TK, Tien M, Kersten PJ (1986) Biochem J 236:279–287

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ivancich A, Mazza G, Desbois A (2001) Biochemistry 40:6860–6866

    CAS  PubMed  Google Scholar 

  60. Hofrichter M (2002) Enzym Microb Technol 30:454–466

    CAS  Google Scholar 

  61. Lobos S, Larrain J, Salas L, Cullen D, Vicuna R (1994) Microbiology 140(10):2691–2698

    CAS  PubMed  Google Scholar 

  62. Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Biochemistry 31:4986–4995

    CAS  PubMed  Google Scholar 

  63. Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Adv Appl Microbiol 82:1–28

    CAS  PubMed  Google Scholar 

  64. Hofrichter M, Steffen K, Hatakka A (2001) Decomposition of Humic substances by Ligninolytic Fungi. In: 5th Finnish Conference on Environmental Science and Proceedings, Turku, Finland (pp. 56–60).

  65. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) Appl Microbiol Biotechnol 87:871–897

    CAS  PubMed  Google Scholar 

  66. Gasser CA, Ammann EM, Shahagaldian P, Corvini PF (2014) Appl Microbiol Biotechnol 98:9931–9952

    CAS  PubMed  Google Scholar 

  67. Ouzounis C, Sander C (1991) FEBS Lett 279:73–78

    CAS  PubMed  Google Scholar 

  68. Falade AO, Mabinya LV, Okoh AI, Nwodo UU (2018) Microbiol Open 7(6):e00722

    Google Scholar 

  69. Wong DWS (2009) Appl Biochem Biotechnol 157:174–209

    CAS  PubMed  Google Scholar 

  70. Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) J Mol Biol 354:385–402

    PubMed  Google Scholar 

  71. Plácido J, Capareda S (2015) Biores Bioproc 2(1):23

    Google Scholar 

  72. Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2017) LWT-Food Sci Technol 80:348–354

    CAS  Google Scholar 

  73. Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X (2017) Int J Biol Macromol 98:447–458

    CAS  PubMed  Google Scholar 

  74. Bilal M, Iqbal HM (2019) Biocatal Agricult Biotechnol 101205.

  75. Ibarra D, Romero J, Martínez MJ, Martínez AT, Camarero S (2006) Enzym Microb Technol 39:1319–1327

    CAS  Google Scholar 

  76. Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB (2004) J Mol Biol 338:495–506

    CAS  PubMed  Google Scholar 

  77. Chandel AK, Silvério S, Singh OV (2013) BioEnergy Res 6:388–401

    CAS  Google Scholar 

  78. Silva MLC, de Souza VB, da Silva SV, Kamida HM, de Vasconcellos-Neto JRT, Góes-Neto A, Koblitz MGB (2014) Adv Biosci Biotechnol 5(14):1067

    Google Scholar 

  79. Naraian R, Singh D, Verma A, Garg SK (2010) J Environ Biol 31:945–951

    PubMed  Google Scholar 

  80. Rajak RC, Banerjee R (2016) RSC Adv 6(66):61301–61311

    Google Scholar 

  81. Asgher M, Bashir F, Iqbal HMN (2014) Chem Eng Res Des 92(8):1571–1578

    CAS  Google Scholar 

  82. Arora DS, Mukesh C, Gill PK (2002) Int Biodeterior Biodegrad 50:115–120

    CAS  Google Scholar 

  83. Feng C, Zeng G, Huang D, Hu S, Zhao M, Lai C, Li N (2011) Process Biochem 46(7):1515–1520

    CAS  Google Scholar 

  84. Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT (2018) Proc Natl Acad Sci 115(25):6428–6433

    PubMed  Google Scholar 

  85. Vina-Gonzalez J, Elbl K, Ponte X, Valero F, Alcalde M (2018) Biotechnol Bioeng 115:1666–1674

    CAS  PubMed  Google Scholar 

  86. Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Fuhrer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO (2017) Sci Rep 7:13688

    PubMed  PubMed Central  Google Scholar 

  87. Brissos V, Tavares D, Sousa AC, Robalo MP, Martins LO (2017) ACS Catal 7:3454–3465

    CAS  Google Scholar 

  88. Gonzalez-Perez D, Mateljak I, Garcia-Ruiz E, Ruiz-Duenas FJ, Martinez AT, Alcalde M (2016) Catal Sci Technol 6:6625–6636

    CAS  Google Scholar 

  89. Mate DM, Palomino MA, Molina-Espeja P, Martin-Diaz J, Alcalde M (2017) Protein Eng Des Sel 30:189–196

    PubMed  Google Scholar 

  90. Torres-Salas P, Mate DM, Ghazi I, Plou FJ, Ballesteros AO, Parisutham V, Kim TH, Lee SK (2014) Bioresour Technol 161:431–440

    Google Scholar 

  91. Risso VA, Gavira JA, Gaucher EA, Sanchez-Ruiz JM (2014) Proteins 82:887–896

    CAS  PubMed  Google Scholar 

  92. Zhang R, Li C, Wang J, Yan Y (2018) Biochemistry 58(11):1501–1510

    PubMed  Google Scholar 

  93. Lange H, Decina S, Crestini C (2013) Eur Polym J 49:1151–1173

    CAS  Google Scholar 

  94. Niku-Paavola M-L, Anke H, Poppius-Levlin K, Viikari L (2003) Appl. Enzym. to Lignocellul. In: Mansfield SD, Saddler JN (eds) Siderophores as natural mediators in laccase-aided degradation of lignin. ACS symp Ser 855, Washington DC, pp. 176–190.

  95. Eggert C, Temp U, Eriksson KEL (1996) Appl. Environ Microbiol 62:1151–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang X, Yao B, Su X (2018) Int J Mol Sci 19(11):3373

    PubMed Central  Google Scholar 

  97. Kawai S, Asukai M, Ohya N, Okita K, Ito T, Ohashi H (1999) FEMS Microbiol Lett 170:51–57

    CAS  Google Scholar 

  98. Oksanen T, Buchert J, Amann M, Candussio A, Viikari L (2002) Prog Biotechnol 21:255–262

    CAS  Google Scholar 

  99. Ander P, Eriksson KE (1976) Arch. Microbiol. 109:1–8

    CAS  Google Scholar 

  100. Nanayakkara S, Patti AF (2014) Saito K. Green Chem. 16:1897–1903

    CAS  Google Scholar 

  101. Rajak RC, Banerjee R (2015) RSC Advances 5(92):75281–75291

    Google Scholar 

  102. Woolridge E (2014) Catalysts 4:1–35

    Google Scholar 

  103. Valls C, Colom JF, Baffert C (2010) Gimbert, Roncero MB, Sigoillot JC. Biochem Eng J 49:401–407

    CAS  Google Scholar 

  104. Kapoor M, Kapoor RK, Kuhad RC (2007) J Appl Microbiol 103:305–317

    CAS  PubMed  Google Scholar 

  105. Moreno AD, Ibarra D, Fernández JL, Ballesteros M (2012) Bioresour Technol 106:101–109

    CAS  PubMed  Google Scholar 

  106. Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Bilal M (2019) RSC Advances 9(12):6919–6927

    CAS  Google Scholar 

  107. Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT, Martínez MJ (2009) Bioresour Technol 100:6378–6384

    CAS  PubMed  Google Scholar 

  108. Delgenes JP, Moletta R, Navarro JM (1996) Enzyme Microb Technol 19:220–225

    CAS  Google Scholar 

  109. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Bioresour Technol 98:1947–1950

    CAS  PubMed  Google Scholar 

  110. Lee K, Kalyani D, Tiwari MK, Kim T, Dhiman SS, Lee J, Kim I (2012) Bioresour Technol 123:636–645

    CAS  PubMed  Google Scholar 

  111. Dijkman WP, Groothuis DE, Fraaije MW (2014) Angew Chem 53:6515–6518

    CAS  Google Scholar 

  112. Ferreira P, Medina M, Guillén F, Martinez M, Van Berkel W, Martinez A (2005) Biochem J 389:731–738

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT (2015) FEBS J 282:3218–3229

    CAS  PubMed  Google Scholar 

  114. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Biodegradation 19:771–783

    CAS  PubMed  Google Scholar 

  115. Tuomela M, Hatakka A (2011) “Oxidative fungal enzymes for bioremediation”. In: Moo-Young M, Agathos S, eds. Comprehensive Biotechnology. 183. Spain, Elsevier.

  116. Asgher M, Wahab A, Bilal M, Iqbal HM (2018) Waste Biomass Valori 9(11):2071–2079

    CAS  Google Scholar 

  117. Sondhi S, Kaur R, Kaur S, Kaur PS (2018) Int J Biol Macromol 117:1093–1100

    CAS  PubMed  Google Scholar 

  118. Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) Bioresour Technol 271:360–367

    CAS  PubMed  Google Scholar 

  119. Bilal M, Jing Z, Zhao Y, Iqbal HM (2019) Biocatal Agricult Biotechnol 19:101174

    Google Scholar 

  120. Zhang R, Wang L, Han J, Wu J, Li C, Ni L, Wang Y (2020) J Hazard Mat 383: 121130.

  121. Wesenberg, D. I. Kyriakides, SN. Agathos (2003) Biotechnol Adv 22: 161–187.

  122. Rekik H, Jaouadi NZ, Bouacem K, Zenati B, Kourdali S, Badis A, Jaouadi B (2019) Int J Biol Macromol 125:514–525

    CAS  PubMed  Google Scholar 

  123. Guo J, Liu X, Zhang X, Wu J, Chai C, Ma D, Ge W (2019) Int J Biol Macromol 138:433–440

    CAS  PubMed  Google Scholar 

  124. Vandana T, Kumar SA, Swaraj S, Manpal S (2019) BioResources 14(3):5380–5399

    CAS  Google Scholar 

  125. Shaheen R, Asgher M, Hussain F, Bhatti HN (2017) Int J Biol Macromol 103:57–64

    CAS  PubMed  Google Scholar 

  126. Hofrichter M, Steinbüchel A (Eds.) (2001) Biodegradation of lignin. In: Hofrichter M, Steinbuchel A, eds. Lignin, Humic substances and Coal. Weinheim, Wiley-VCH. pp. 129–180, 2001.

  127. Bilal M, Asgher M, Hu H, Zhang X (2016) Water Sci Technol 74(8):1809–1820

    CAS  PubMed  Google Scholar 

  128. Bilal M, Asgher M (2016) J Mol Catal B: Enzymatic 128:82–93

    CAS  Google Scholar 

  129. Gaur N, Narasimhulu K, Pydisetty Y (2018) RSC adv 8(27):15044–15055

    CAS  Google Scholar 

  130. Zhang H, Zhang J, Zhang X, Geng A (2018) Process Biochem 66:222–229

    CAS  Google Scholar 

  131. Zhang H, Zhang X, Geng A (2020) Biochem Eng J 153: 107402.

  132. Min C, Shanjing YAO, Zhang H, Liang X (2010) Chin J Chem Eng 18(5):824–829

    Google Scholar 

  133. Liu J, Zhang S, Shi Q, Wang L, Kong W, Yu H, Ma F (2019) Int Biodeterior Biodegrad 136:41–48

    CAS  Google Scholar 

  134. Sáez-Jiménez V, Fernández-Fueyo E, Medrano FJ, Romero A, Martínez AT, Ruiz-Dueñas FJ (2015) PLoS ONE 10(10):e0140984

    PubMed  PubMed Central  Google Scholar 

  135. Rodríguez‐Couto (2019) Current Trends in the Production of Ligninolytic Enzymes. A Handbook on High Value Fermentation Products, Volume 2: Human Welfare, 67.

  136. Asgher M, Ahmad Z, Iqbal HM (2017) Carbohydr Polym 161:244–252

    CAS  PubMed  Google Scholar 

  137. Nagula KN, Pandit AB (2016) Biorzsour Technol 213:162–168

    CAS  Google Scholar 

  138. Mukhopadhyay M, Banerjee R (2014) 3 Biotech 5(3), 227–236.

  139. Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2014) Biotechnol Biofuels 7(1):6

    PubMed  PubMed Central  Google Scholar 

  140. Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, José C, Martínez ÁT (2012) Bioresour Technol 119:114–122

    PubMed  Google Scholar 

  141. Annunziatini C, Baiocco P, Gerini MF, Lanzalunga O, Sjögren B (2005) J Mol Catal B: Enzym 32(3):89–96

    CAS  Google Scholar 

  142. Oudia A, Queiroz J, Simões R (2008) Appl Biochem Biotechnol 149(1):23–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to their representative institutes/universities for providing literature facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interest

We do not have any conflicting, competing and financial interests in any capacity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Iqbal, H.M.N. Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catal Lett 150, 524–543 (2020). https://doi.org/10.1007/s10562-019-03096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03096-9

Keywords

Navigation