Skip to main content
Log in

Protein Engineering of a Metalloprotease in Order to Improve Organic Solvents Stability and Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Recently, improve the protease activity in the presence of organic solvents has been appreciated for the researchers. In the current study, we have tried to increase the organic solvent stability of salinovibrio proteolyticus protease (SVP) by site-directed mutagenesis. Five variants were constructed to substitute the surface charged, and polar amino acid residues in SVP with hydrophobic ones (T21V, Y23V, K30P, D25P and N248G) to examine the outcome of surface hydrophobicity on the enzyme efficiency in the presence of organic solvent. The catalytic efficiency of Y23V and N248G mutants not only increased about 1.8 and 2.6 folds in DMF and methanol but also increased it about 3.8 and 5.0 folds in isopropanol and n-propanol, compared to SVP. ∆∆G values of Y23V and N248G variants, increased about 6.5 and 9.5 kcal mol−1 in DMF and methanol, and it improved about 13.6 and 16.6 kcal mol−1 in isopropanol and n-propanol, respectively. These results show that irreversible thermoinactivation rate of protease has a straight relationship with hydrophobicity of organic solvents.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simon LM, Kotorman M, Szabo A, Nemcsok J, Laczko I (2007) P Biocheim 42:909–912

    Article  CAS  Google Scholar 

  2. Schmid A, Dordick JS, Hauer B, Kiener A, Wubboltz M, Witholt B (2001) Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  3. Klibanov AM (2003) Curr Opin Biotechnol 14:427–431

    Article  CAS  PubMed  Google Scholar 

  4. Koeller KM, Wong CH (2001) Nature 409:232–240

    Article  CAS  PubMed  Google Scholar 

  5. Dordick JS (1992) Biotechnol Prog 8:259–267

    Article  CAS  PubMed  Google Scholar 

  6. Wong CH, Chen ST, Hennen WJ, Bibbs JA, Wang YF, Liu JLC, Pantoliano MW, Whitlow M, Bryan PN (1990) J Am Chem Soc 112:945–953

    Article  CAS  Google Scholar 

  7. Chen KQ, Robinson AC, Van Dam ME, Martinez P, Economou C, Arnold FH (1991) Biotechnol Prog 7:125–129

    Article  CAS  PubMed  Google Scholar 

  8. Economou C, Chen K, Arnold FH (1992) Biotechnol Bioeng 39:658–662

    Article  CAS  PubMed  Google Scholar 

  9. Ogino H, Uchiho T, Doukyu N, Yasuda M, Ishimi K, Ishikawa H (2007) Biochem Biophys Res Commun 358:1028–1033

    Article  CAS  PubMed  Google Scholar 

  10. Chen KQ, Arnold FH (1991) Biotechnology 9:1073–1077

    Article  CAS  PubMed  Google Scholar 

  11. Chen K, Arnold FH (1993) Proc Natl Acad Sci 90:5618–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moore JC, Arnold FH (1996) Nat Biotechnol 14:458–467

    Article  CAS  PubMed  Google Scholar 

  13. Pantoliano MW, Whitlow M, Wood JF, Dodd SW, Hardman KD, Rollence ML, Bryan PN (1989) Biochemistry 28:7205–7213

    Article  CAS  PubMed  Google Scholar 

  14. Song JK, Rhee JS (2001) Biochim Biophys Acta 1547:370–378

    Article  CAS  PubMed  Google Scholar 

  15. Velde FVD, Rantwijk FV, Sheldon RA (2001) Trends Biotechnol 19:73–80

    Article  PubMed  Google Scholar 

  16. You L, Arnold FH (1996) Protein Eng 9:77–83

    Article  CAS  PubMed  Google Scholar 

  17. Park HJ, Joo JC, Park K, Yoo YJ (2012) Biotechnol. Bioprocess Eng 17:722–728

    Article  CAS  Google Scholar 

  18. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J (2013) ACS Catal 3:2823–2836

    Article  CAS  Google Scholar 

  19. Rasekh B, Khajeh Kh, Ranjbar B, Mollania N, Almasinia B, Tirandaz H (2014) Eng Life Sci 14:442–448

    Article  CAS  Google Scholar 

  20. Ashraf NM, Krishnagopal A, Hussain A, Kastner D, Mahmoud Mohammed SA, Mok YK, Swaminathan K, Zeeshan N (2019) Int J Biol Macromol 126:229–237

    Article  CAS  PubMed  Google Scholar 

  21. Beaumont A, Beynon RF (1998) Academic press, Landon

  22. Karbalaei-Heidari HR, Ziaee AA, Schaller J, Amoozegar MA (2007) Enz Microb Technol 40:266–272

    Article  CAS  Google Scholar 

  23. Karbalaei-Heidari HR, Ziaee AA, Amoozegar MA, Cheburkin Y, Budisa N (2008) Gene 408:196–203

    Article  CAS  PubMed  Google Scholar 

  24. Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR (2008) Int J Syst Evol Microbiol 58:1159–1163

    Article  CAS  PubMed  Google Scholar 

  25. Horikoshi K (1999) Microbiol Mol Biol Rev 63:735–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Badoei-Dalfard A, Khajeh Kh, Asghari SM, Ranjbar B, Karbalaei-Heidari HR (2010) J Biochem 148:231–238

    Article  CAS  PubMed  Google Scholar 

  27. Thayer MM, Flaherty KM, McKay DB (1991) J Biol Chem 266:2864–2871

    CAS  PubMed  Google Scholar 

  28. Colmax M, Jansonius JN, Matthews BW (1972) J Mol Biol 70:701–724

    Article  Google Scholar 

  29. Pauptit RA, Karlsson R, Picot D, Jenkins JA, Nikolaus-Reimer AS, Jansonius JN (1988) J Mol Biol 199:525–537

    Article  CAS  PubMed  Google Scholar 

  30. Badoei-Dalfard A, Goodarzi N, Dabirmanesh B, Khajeh K (2018) Int J Biol Macromol 120:440–448

    Article  CAS  PubMed  Google Scholar 

  31. Fisher CL, Pei GK (1997) Biotechniques 23:570–574

    Article  CAS  PubMed  Google Scholar 

  32. Tatsumi C, Hashida Y, Yasukawa K, Inouye K (2007) J Biochem 141:835–842

    Article  CAS  PubMed  Google Scholar 

  33. Yasukawa K, Inouye K (2007) Biochim Biophys Acta 1774:1281–1288

    Article  CAS  PubMed  Google Scholar 

  34. Inouye K, Minoda M, Takita T, Sakurama H, Hashida Y, Kusano M, Yasukawa K (2006) Protein Expr Purif 46:248–255

    Article  CAS  PubMed  Google Scholar 

  35. Inouye K (1992) J Biochem 112:335–340

    Article  CAS  PubMed  Google Scholar 

  36. Inouye K, Lee SB, Tonomura B (1996) Biochem J 315:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilkinson AJ, Fersht AR, Blow DM, Winter G (1983) Biochemistry 22:3581–3586

    Article  CAS  PubMed  Google Scholar 

  38. Pazhang M, Khajeh Kh, Ranjbar B, Hosseinkhani S (2006) J Biotechnol 127:45–53

    Article  CAS  PubMed  Google Scholar 

  39. Ogino H, Uchiho T, Yokoo J, Kobayashi R, Ichise R, Ishikawa H (2001) Appl Environ Microbiol 67:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dantas G, Corrent C, Reichow SL, Havranek JJ, Eletr ZM, Isern NG et al (2007) J Mol Biol 366:1209–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawata T, Ogino H (2010) Biochem Biophys Res Commun 400:348–388

    Article  CAS  Google Scholar 

  42. Monsef-Shokri M, Ahmadian SH, Akbari N, Khajeh K (2013) Mol Biotechnol 56(4):360–368

    Article  CAS  Google Scholar 

  43. Yang S, Zhou L, Tang H, Pan J, Wu X, Huang H et al (2002) J Mol Catal B Enzym 18:258–290

    Article  Google Scholar 

  44. Imanaka T, Shibazaki M, Takagi M (1986) Nature 324:695–697

    Article  CAS  PubMed  Google Scholar 

  45. Fontana A (1988) Biophys Chem 29:181–193

    Article  CAS  PubMed  Google Scholar 

  46. Van den Burg B, Dijkstra BW, Vriend G, Van der Vinne B, Venema G, Eijsink VGH (1994) Eur J Biochem 220:981–985

    Article  PubMed  Google Scholar 

  47. Vriend G, Berendsen HJ, van den Burg B, Venema G, Eijsink VG (1998) J Biol Chem 273:35074–35077

    Article  CAS  PubMed  Google Scholar 

  48. Zhao H, Arnold FH (1999) Protein Eng 12:47–53

    Article  CAS  PubMed  Google Scholar 

  49. Matthews BW, Nicholson H, Becktel WJ (1987) Proc Natl Acad Sci 84:6663–6667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hardy F, Vriend G, Veltman OR, Van der Vinne B, Venema G, Eijsink VGH (1993) FEBS Lett 317:89–92

    Article  CAS  PubMed  Google Scholar 

  51. Eijsink VGH, Dijkstra BW, Vriend G, Van der Zee JR, Veltman OR, Van der Vinne B, Van den Burg B, Kempe S, Venema G (1992) Protein Eng 5:421–426

    Article  CAS  PubMed  Google Scholar 

  52. Eijsink VGH, Vriend G, Van der Vinne B, Hazes B, Van den Burg B, Venema G (1992) Proteins 14:224–236

    Article  CAS  PubMed  Google Scholar 

  53. Vriend G, Eijsink VGH (1993) J Comput Aided Mol Des 7:367–396

    Article  CAS  PubMed  Google Scholar 

  54. Mansfeld J, Ulbrich-Hofmann R (2007) Biotechnol Bioeng 97:672–679

    Article  CAS  PubMed  Google Scholar 

  55. Tsuzki W, Ue A, Nagao A (2003) Biosci Biotechnol Biochem 6:1660–1666

    Article  Google Scholar 

  56. Serdakowski A, Dordick JS (2008) Trends Biotechnol 26:48–54

    Article  CAS  PubMed  Google Scholar 

  57. Zaks A, Klibanov AM (1988) J Biol Chem 263:8017–8021

    CAS  PubMed  Google Scholar 

  58. Rupley JA, Careri G (1991) Adv Protein Chem 41:137–172

    Google Scholar 

  59. Dahlquist FW, Long JW, Bigbee WL (1976) Biochemistry 15:1103–1111

    Article  CAS  PubMed  Google Scholar 

  60. Van den Burg B, Eijsink VGH, Stulp BK, Venema G (1990) Biochem J 272:93–97

    Article  PubMed  PubMed Central  Google Scholar 

  61. Braxton S, Wells JA (1992) Biochemistry 31:7796–7801

    Article  CAS  PubMed  Google Scholar 

  62. Hardy F, Vriend G, van der Vinne B, Frigerio F, Grandi G, Venema G, Eijsink VGH (1994) Protein Eng 7:425–430

    Article  CAS  PubMed  Google Scholar 

  63. Nosoh Y, Sekiguchi T (1988) Biocatalysis 1:257–273

    Article  Google Scholar 

  64. Arnold FH (1990) Trends Biotechnol 8:244–249

    Article  CAS  PubMed  Google Scholar 

  65. Martinez P, Arnold FH (1991) J Am Chem Soc 113:6336–6337

    Article  CAS  Google Scholar 

  66. Chen S, Engel PC (2007) Enz Microb Technol 40:1407–1411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arastoo Badoei-dalfard.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badoei-dalfard, A., Khajeh, K. & Karami, Z. Protein Engineering of a Metalloprotease in Order to Improve Organic Solvents Stability and Activity. Catal Lett 150, 1219–1229 (2020). https://doi.org/10.1007/s10562-019-03044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03044-7

Keywords

Navigation