Skip to main content
Log in

In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the γ-MnO2 catalyst modified with PEG exhibits outstanding low-temperature performances for NO oxidation, and in-situ DRIFTS experiments were used to systematically investigate the low-temperature NO oxidation mechanisms over γ-MnO2. These results demonstrated that NO was first adsorbed on the surface of γ-MnO2 to form the nitrosyls, which could be further oxidized to nitrates under the action of the chemisorbed oxygen or lattice oxygen, and afterwards the formed nitrates were decomposed into nitrogen dioxide. Moreover, the inhibitory mechanism of SO2 on γ-MnO2 was also studied, and SO2 severely inhibit the NO oxidation performance of γ-MnO2 through forming stable sulfates that could easily consume the active sites of the catalyst to hinder the formation of nitrates, resulting in the termination of oxidation of NO to NO2. Clarifying the mechanisms of NO oxidation and SO2 poison is very essential for developing better NO oxidation catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Niu C, Shi X, Liu F et al (2016) High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOX. Chem Eng J 294:254–263

    CAS  Google Scholar 

  2. Bueno-López A, Lozano-Castelló D, Anderson JA (2016) NOX storage and reduction over copper-based catalysts. Part 2: Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd). Appl Catal B 198:234–242

    Google Scholar 

  3. Bártová Š, Mráček D, Kočí P et al (2015) Ammonia reactions with the stored oxygen in a commercial lean NOX trap catalyst. Chem Eng J 278:199–206

    Google Scholar 

  4. Li K, Tang X, Yi H et al (2012) Low-temperature catalytic oxidation of NO over Mn–Co–Ce–OX catalyst. Chem Eng J 192:99–104

    CAS  Google Scholar 

  5. Wang Z, Lin F, Jiang S et al (2016) Ceria substrate-oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2. Fuel 166:352–360

    CAS  Google Scholar 

  6. Meng L, Wang J, Sun Z et al (2018) Active manganese oxide on MnOX–CeO2 catalysts for low-temperature NO oxidation: characterization and kinetics study. J Rare Earth 36(2):142–147

    CAS  Google Scholar 

  7. Ma S-j, Wang X-w, Chen T et al (2018) Effect of surface morphology on catalytic activity for NO oxidation of SmMn2O5 nanocrystals. Chem Eng J 354:191–196

    CAS  Google Scholar 

  8. Thampy S, Zheng Y, Dillon S et al (2018) Superior catalytic performance of Mn-Mullite over Mn-Perovskite for NO oxidation. Catal Today 310:195–201

    CAS  Google Scholar 

  9. Onrubia JA, Pereda-Ayo B, De-La-Torre U et al (2017) Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl Catal B 213:198–210

    CAS  Google Scholar 

  10. Zhao B, Ran R, Wu X et al (2014) Comparative study of Mn/TiO2 and Mn/ZrO2 catalysts for NO oxidation. Catal Commun 56:36–40

    CAS  Google Scholar 

  11. You F-T, Yu G-W, Wang Y et al (2017) Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature. Appl Surf Sci 413:387–397

    CAS  Google Scholar 

  12. Chen J, Shen M, Wang X et al (2013) The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Appl Catal B 134–135:251–257

    Google Scholar 

  13. Zhang M, Li C, Qu L et al (2014) Catalytic oxidation of NO with O2 over FeMnOX/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Appl Surf Sci 300:58–65

    CAS  Google Scholar 

  14. Qi G, Li W (2015) NO oxidation to NO2 over manganese-cerium mixed oxides. Catal Today 258:205–213

    CAS  Google Scholar 

  15. Wang J, Su Y, Wang X et al (2012) The effect of partial substitution of Co in LaMnO3 synthesized by sol–gel methods for NO oxidation. Catal Commun 25:106–109

    CAS  Google Scholar 

  16. Chen H, Wang Y, Lv Y-K (2016) Catalytic oxidation of NO over MnO2 with different crystal structures. RSC Adv 6(59):54032–54040

    CAS  Google Scholar 

  17. Zhao B, Ran R, Wu X et al (2016) Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts. Appl Catal A 514:24–34

    CAS  Google Scholar 

  18. Gao F, Tang X, Yi H et al (2017) In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem Eng J 322:525–537

    CAS  Google Scholar 

  19. Zhao H, Song J, Song X et al (2015) Ag/white graphene foam for catalytic oxidation of methanol with high efficiency and stability. J Mater Chem A 3(12):6679–6684

    CAS  Google Scholar 

  20. Hou Z, Theyssen N, Leitner W (2007) Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem 9(2):127–132

    CAS  Google Scholar 

  21. Chen H, Wang Y, Lyu Y-K (2018) High catalytic activity of Mn-based catalyst in NO oxidation at low temperature and over a wide temperature span. Mol Catal 454:21–29

    CAS  Google Scholar 

  22. De Wolff P (1959) Interpretation of some γ-MnO2 diffraction patterns. Acta Crystallogr 12(4):341–345

    Google Scholar 

  23. Giménez-Mañogil J, Bueno-López A, García-García A (2014) Preparation, characterisation and testing of CuO/Ce0.8Zr0.2O2 catalysts for NO oxidation to NO2 and mild temperature diesel soot combustion. Appl Catal B 152–153:99–107

    Google Scholar 

  24. Zhong S, Sun Y, Xin H et al (2015) NO oxidation over Ni–Co perovskite catalysts. Chem Eng J 275:351–356

    CAS  Google Scholar 

  25. Qiu L, Wang Y, Pang D et al (2016) Characterization and catalytic activity of Mn-Co/TiO2 catalysts for NO oxidation to NO2 at low temperature. Catalysts 6(1):9

    Google Scholar 

  26. Kaneeda M, Iizuka H, Hiratsuka T et al (2009) Improvement of thermal stability of NO oxidation Pt/Al2O3 catalyst by addition of Pd. Appl Catal B 90(3–4):564–569

    CAS  Google Scholar 

  27. Schmitz PJ, Kudla RJ, Drews AR et al (2006) NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Appl Catal B 67(3–4):246–256

    CAS  Google Scholar 

  28. Lian Z, Liu F, He H et al (2014) Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOX with NH3 at low temperatures. Chem Eng J 250:390–398

    CAS  Google Scholar 

  29. Hadjiivanov KI (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev 42(1–2):71–144

    CAS  Google Scholar 

  30. Yang S, Wang C, Li J et al (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: performance, mechanism and kinetic study. Appl Catal B 110:71–80

    CAS  Google Scholar 

  31. Guan B, Lin H, Zhu L et al (2011) Selective catalytic reduction of NOX with NH3 over Mn, Ce substitution Ti0.9V0.1O2–δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J Phys Chem C 115(26):12850–12863

    CAS  Google Scholar 

  32. Tang N, Liu Y, Wang H et al (2011) Mechanism study of NO catalytic oxidation over MnOX/TiO2 catalysts. J Phys Chem C 115(16):8214–8220

    CAS  Google Scholar 

  33. Headrick JM, Diken EG, Walters RS et al (2005) Spectral signatures of hydrated proton vibrations in water clusters. Science 308(5729):1765–1769

    CAS  PubMed  Google Scholar 

  34. Wang W, McCool G, Kapur N et al (2012) Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust. Science 337(6096):832–835

    CAS  PubMed  Google Scholar 

  35. Hadjiivanov K, Knozinger H (2000) Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys Chem Chem Phys 2(12):2803–2806

    CAS  Google Scholar 

  36. Kantcheva M (2001) Identification, stability, and reactivity of NOX species adsorbed on titania-supported manganese catalysts. J Catal 204(2):479–494

    CAS  Google Scholar 

  37. Bion N, Saussey J, Haneda M et al (2003) Study by in-situ FTIR spectroscopy of the SCR of NOX by ethanol on Ag/Al2O3—evidence of the role of isocyanate species. J Catal 217(1):47–58

    CAS  Google Scholar 

  38. Goodman AL, Miller TM, Grassian VH (1998) Heterogeneous reactions of NO2 on NaCl and Al2O3 particles. J Vac Sci Technol A 16(4):2585–2590

    CAS  Google Scholar 

  39. Wen Y, Zhang C, He H et al (2007) Catalytic oxidation of nitrogen monoxide over La1–XCeXCoO3 perovskites. Catal Today 126(3–4):400–405

    CAS  Google Scholar 

  40. Liang H, Wu S, Hong Y et al (2014) Influence of alkali metals with different ionic radius doping into Ce0.7Zr0.3O2 on the active oxygen. Catal Lett 144(4):685–690

    CAS  Google Scholar 

  41. Wang H, Liu J, Zhao Z et al (2012) Comparative study of nanometric Co-, Mn- and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOX from diesel engine exhaust. Catal Today 184(1):288–300

    CAS  Google Scholar 

  42. Jiang B, Deng B, Zhang Z et al (2014) Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. J Phys Chem C 118(27):14866–14875

    CAS  Google Scholar 

  43. Abdulhamid H, Fridell E, Dawody J et al (2006) In-situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOX storage catalysts under lean and rich conditions. J Catal 241(1):200–210

    CAS  Google Scholar 

  44. Kwon DW, Nam KB, Hong SC (2015) The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOX by NH3. Appl Catal B 166–167:37–44

    Google Scholar 

  45. Sjoerd Kijlstra W, Biervliet M, Poels EK et al (1998) Deactivation by SO2 of MnOX/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 16(4):327–337

    CAS  Google Scholar 

  46. Lin F, He Y, Wang Z et al (2016) Catalytic oxidation of NO by O2 over CeO2–MnOX: SO2 poisoning mechanism. RSC Adv 6(37):31422–31430

    CAS  Google Scholar 

  47. Jin R, Liu Y, Wu Z et al (2010) Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catal Today 153(3):84–89

    CAS  Google Scholar 

  48. Gao F, Tang X, Yi H et al (2017) Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOX-CeO2 catalysts for SCR of NOX with NH3 at low temperature. Chem Eng J 317:20–31

    CAS  Google Scholar 

  49. Jin R, Liu Y, Wang Y et al (2014) The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B 148–149:582–588

    Google Scholar 

  50. Yamaguchi T, Jin T, Tanabe K (1986) Structure of acid sites on sulfur-promoted iron oxide. J Phys Chem 90(14):3148–3152

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant No. 51778397) and the Natural Science Foundation of Shanxi Province (Grant No. 201601D011078) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, Y. & Lyu, YK. In-Situ DRIFTS for Reaction Mechanism and SO2 Poisoning Mechanism of NO Oxidation Over γ-MnO2 with Good Low-Temperature Activity. Catal Lett 149, 753–765 (2019). https://doi.org/10.1007/s10562-018-2635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2635-6

Keywords

Navigation