Skip to main content
Log in

Matching Relationship Between Carbon Material and Pd Precursor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The matching relationship between carbon material and Pd precursor was investigated by constructing Pd@C catalysts with four carbon materials (mesoporous carbon, activated carbon, N-doped carbon and O-doped carbon) and three Pd precursors (PdCl2, Pd(C2H3O2)2 and Pd(NO3)2) and evaluating their catalytic performance in the phenol hydrogenation to cyclohexanone. The Pd precursor or the carbon material has no obvious influence on the cyclohexanone selectivity, but strongly affects the catalytic activity. The Pd@C prepared via PdCl2 shows good performance among all tested catalysts due to higher Pd content and better Pd dispersion. Conversely, although Pd(NO3)2 is easily adsorbed by carbon carriers, the catalytic activity is poor due to the worse Pd dispersion. The Pd(C2H3O2)2 adsorption is very sensitive to the surface properties of carbon, and the N-doping can enhance the binding force between carbon and Pd2+, leading to higher Pd content and better Pd dispersion, thereby enhanced catalytic activity. This work would provide valuable references for the selection of Pd precursor for a given support.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang XQ, Feng BM, Niu YL, Zhao L, Hu WH (2018) Fenton-reaction-derived Fe/N-doped graphene with encapsulated Fe3C nanoparticles for efficient photo–fenton catalysis. Catal Lett 148:2528–2536

    Article  CAS  Google Scholar 

  2. Liu AM, Hidajat K, Kawi S (2001) Combining the advantages of homogeneous and heterogeneous catalysis: rhodium complex on functionalized MCM-41 for the hydrogenation of arenes. J Mol Catal A 168:303–306

    Article  CAS  Google Scholar 

  3. He X, Bai SY, Sun JH, Zhang YJ, Zhao HW, Wu X (2018) Bipyridine–proline grafted silicas with different mesopore structures: their catalytic performance in asymmetric aldol reaction and structure effect. Catal Lett 148:2408–2417

    Article  CAS  Google Scholar 

  4. De Smet K, Aerts S, Ceulemans E, Vankelecom IFJ, Jacobs PA (2001) Nanofiltration-coupled catalysis to combine the advantages of homogeneous and heterogeneous catalysis. Chem Commun 7:597–598

    Article  Google Scholar 

  5. Feng G, Chen P, Lou H (2015) Palladium catalysts supported on carbon-nitrogen composites for aqueous-phase hydrogenation of phenol. Catal Sci Technol 5:2300–2304

    Article  CAS  Google Scholar 

  6. Shao Y, Xu ZY, Wan HQ, Wan YQ, Chen H, Zheng SR, Zhu DQ (2011) Enhanced liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over mesoporous carbon supported Pd catalysts. Catal Commun 12:1405–1409

    Article  CAS  Google Scholar 

  7. Hu S, Zhang X, Qu ZY, Jiang H, Liu YF, Huang J, Xing WH, Chen RZ (2017) Insights into deactivation mechanism of Pd@CN catalyst in the liquid-phase hydrogenation of phenol to cyclohexanone. J Ind Eng Chem 53:333–340

    Article  CAS  Google Scholar 

  8. Li ZL, Liu JH, Xia CG, Li FW (2013) Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal 3:2440–2448

    Article  CAS  Google Scholar 

  9. Nie RF, Miao M, Du WC, Shi JJ, Liu YC, Hou ZY (2016) Selective hydrogenation of C=C bond over N-doped reduced grapheme oxides supported Pd catalyst. Appl Catal B 180:607–613

    Article  CAS  Google Scholar 

  10. Dong ZP, Dong CX, Liu YS, Le XD, Jin ZC, Ma JT (2015) Hydrodechlorination and further hydrogenation of 4-chlorophenol to cyclohexanone in water over Pd nanoparticles modified N-doped mesoporous carbon microspheres. Chem Eng J 270:215–222

    Article  CAS  Google Scholar 

  11. Jiang HZ, Yu XL, Nie RF, Lu XH, Zhou D, Xia QH (2016) Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Appl Catal A 520:73–81

    Article  CAS  Google Scholar 

  12. Yang SB, Zhi LJ, Tang K, Feng XL, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640

    Article  CAS  Google Scholar 

  13. Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S (2010) Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem Mater 22:2178–2180

    Article  CAS  Google Scholar 

  14. Xiang YZ, Kong LN, Xie PY, Xu TY, Wang JG, Li XN (2014) Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: hydrophobic/hydrophilic effect. Ind Eng Chem Res 53:2197–2203

    Article  CAS  Google Scholar 

  15. Wang JG, Lv YA, Li XN, Dong MD (2009) Point-defect mediated bonding of Pt clusters on (5,5) carbon nanotubes. J Phys Chem C 113:890–893

    Article  CAS  Google Scholar 

  16. Xu TF, Zhang QF, Cen J, Xiang YZ, Li XN (2015) Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: role of C–O oxygen species. Appl Surf Sci 324:634–639

    Article  CAS  Google Scholar 

  17. Du JP, Song C, Zhao JH, Zhu ZP (2008) Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts. Appl Surf Sci 255:2989–2993

    Article  CAS  Google Scholar 

  18. Xu TY, Zhang QF, Yang HF, Li XN, Wang JG (2013) Role of phenolic groups in the stabilization of palladium nanoparticles. Ind Eng Chem Res 52:9783–9789

    Article  CAS  Google Scholar 

  19. Wang Y, Yao J, Li HR, Su DS, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365

    Article  CAS  PubMed  Google Scholar 

  20. Haque E, Jun JW, Talapaneni SN, Vinu A, Jhung SH (2010) Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. J Mater Chem 20:10801–10803

    Article  CAS  Google Scholar 

  21. Liu HZ, Jiang T, Han BX, Liang SG, Zhou YX (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd–Lewis acid catalyst. Science 326:1250–1252

    Article  CAS  PubMed  Google Scholar 

  22. Ding SS, Zhang CH, Liu YF, Jiang H, Xing WH, Chen RZ (2017) Pd nanoparticles supported on N-doped porous carbons derive from ZIF-67: enhanced catalytic performance in phenol hydrogenation. J Ind Eng Chem 46:258–265

    Article  CAS  Google Scholar 

  23. Gopinath R, Babu NS, Kumar JV, Lingaiah N, Prasad PSS (2008) Influence of Pd precursor and method of preparation on hydrodechlorination activity of alumina supported palladium catalysts. Catal Lett 120:312–319

    Article  CAS  Google Scholar 

  24. Ali SH, Goodwin JW (1998) SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts. J Catal 176:3–13

    Article  CAS  Google Scholar 

  25. Shen WJ, Ichihashi Y, Ando H, Okumura M, Haruta M, Matsumura Y (2001) Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Appl Catal A 217:165–172

    Article  CAS  Google Scholar 

  26. Borkowski T, Trzeciak AM, Bukowski W, Bukowska A, Tylus W, Kepinski L (2010) Palladium(0) nanoparticles formed in situ in the Suzuki–Miyaura reaction: The effect of a palladium(II) precursor. Appl Catal A 378:83–89

    Article  CAS  Google Scholar 

  27. Wang CB, Huang TH (2002) Influence of palladium precursors on oxidation of alumina-supported palladium. Chermochim Acta 381:37–44

    Article  CAS  Google Scholar 

  28. Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196:262–270

    Article  CAS  Google Scholar 

  29. Bhosale MA, Sasaki T, Bhanage BM (2016) Role of palladium precursors in morphology selective synthesis of palladium nanostructures. Powder Technol 291:154–158

    Article  CAS  Google Scholar 

  30. Hu ZL, Aizawa M, Wang ZM, Hatori H (2009) Palladium precursor for highly-efficient preparation of carbon nanosheet-palladium nanoparticle composites. Carbon 47:3365–3380

    Article  CAS  Google Scholar 

  31. Bachiller-Baeza B, Pena-Bahamonde J, Castillejos-Lopez E, Guerrero-Ruiz A, Rodriguez-Ramos I (2015) Improved performance of carbon nanofiber-supported palladium particles in the selective 1,3-butadiene hydrogenation: influence of carbon nanostructure, support functionalization treatment and metal precursor. Catal Today 249:63–81

    Article  CAS  Google Scholar 

  32. Colussi S, Gayen A, Boaro M, Llorca J, Trovarelli A (2015) Influence of different palladium precursors on the properties of solution-combustion-synthesized palladium/ceria catalysts for methane combustion. ChemCatChem 7:2222–2229

    Article  CAS  Google Scholar 

  33. Kinnunen NM, Suvanto M, Moreno MA, Savimaki A, Kallinen K, Kinnunen TJJ, Pakkanen TA (2009) Methane oxidation on alumina supported palladium catalysts: effect of Pd precursor and solvent. Appl Catal A 370:78–87

    Article  CAS  Google Scholar 

  34. Morel A, Trzeciak AM, Pernak J (2014) Palladium catalyzed heck arylation of 2,3-dihydrofuran: effect of the palladium precursor. Molecules 19:8402–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu S, Yang GX, Jiang H, Liu YF, Chen RZ (2018) Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): role of catalyst reduction method. Appl Surf Sci 435:649–655

    Article  CAS  Google Scholar 

  36. Lyalina NN, Dargina SV, Sobolev AN, Buslaeva TM, Romm IP (1993) Structure and properties of palladium(II) diacetate and its complexes. Koordinats Khim 19:57–63

    CAS  Google Scholar 

  37. Mulagaleev RF, Kirik SD (2010) Computational study of the mechanism of cyclometalation by palladium acetate. Russ J Appl Chem 83:2065–2075

    Article  CAS  Google Scholar 

  38. Stoyanov ES (2000) IR study of the structure of palladium(II) acetate in chloroform, acetic acid, and the IR mixtures in solution and in liquid-solid subsurface layers. J Struct Chem 41:440–445

    Article  CAS  Google Scholar 

  39. Kirik SD, Mulagaleev RF (2004) [Pd(CH3COO)(2)](n) from x-ray powder diffraction data. Acta Crystallogr Sect C 60:449–450

    Article  CAS  Google Scholar 

  40. Zhou H, Han BB, Liu TZ, Zhong X, Zhuang GL, Wang JG (2017) Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO2 in aqueous media. Green Chem 19:3585–3594

    Article  CAS  Google Scholar 

  41. Jiang H, Qu ZY, Li Y, Huang J, Chen RZ, Xing WH (2016) One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chem Eng J 284:724–732

    Article  CAS  Google Scholar 

  42. Long X, Zhao ZM, Wu L, Luo S, Wen H, Wu W, Zhang HB, Ma JT (2017) Distinctive ligand effects of functionalized magnetic microparticles immobilizing palladium acetate as heterogeneous coordination catalysts for selective oxidation of styrene to acetophenone. Mol Catal 433:291–300

    Article  CAS  Google Scholar 

  43. Baltrusaitis J, Jayaweera PM, Grassian VH (2009) XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys Chem Chem Phys 11:8295–8305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key R&D Program (Grant No. 2016YFB0301503), the National Natural Science Foundation (Grant Nos. 21776127, 91534210) and the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars (Grant No. BK20150044) of China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Du or Rizhi Chen.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Du, Y., Jiang, H. et al. Matching Relationship Between Carbon Material and Pd Precursor. Catal Lett 149, 813–822 (2019). https://doi.org/10.1007/s10562-018-2630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2630-y

Keywords

Navigation