Skip to main content
Log in

Negative Effects of Dopants on Copper–Ceria Catalysts for CO Preferential Oxidation Under the Presence of CO2 and H2O

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of non-reducible dopants on copper–ceria catalysts for the preferential oxidation of carbon monoxide (CO PROX) were experimentally investigated by adding a non-reducible rare-earth element into the ceria support. Gadolinium-doped cerium oxides were synthesized by a combustion method as a support material for the copper–ceria catalytic system. Various compositions of the catalysts, i.e., CuO/Ce1−xGdxO2−δ (x = 0, 0.05, 0.1, 0.13, 0.18, 0.25 and 0.35), were prepared. The physical, structural, redox and surface chemical properties of the prepared catalysts were characterized by inductively coupled plasma mass spectrometry (ICP-MS), N2 isotherms, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) analyses. To investigate the influence of the dopants on the CO PROX, an activity test was conducted for each sample under a reactant stream containing CO, H2, CO2 and H2O. Negative effects of the dopants on the CO PROX activity were experimentally observed. Several characteristics on the catalysts induced by the insertion of dopants caused the effects. The presence of the non-reducible dopants on the surface hindered the efficiency of the redox equilibrium between copper and cerium, which is the essential process for CO PROX. Surface oxygen vacancies, generated by the introduction of foreign dopants, were not beneficial to the CO PROX activity. Copper species on the catalysts might be penetrated through these vacancies and protected as non-reactive reduced form in these vacancies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydr Energy 26:291–301

    Article  CAS  Google Scholar 

  2. Santacesaria E, Carrá S (1983) Kinetics of catalytic steam reforming of methanol in a cstr reactor. Appl Catal 5:345–358

    Article  CAS  Google Scholar 

  3. Igarashi H, Fujino T, Watanabe M (1995) Hydrogen electro-oxidation on platinum catalysts in the presence of trace carbon monoxide. J Electroanal Chem 391:119–123

    Article  Google Scholar 

  4. Tanaka H, Kuriyama M, Ishida Y, Ito S-I, Tomishige K, Kunimori K (2008) Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: part I. Catalytic performance. Appl Catal A 343:117–124

    Article  CAS  Google Scholar 

  5. Pozdnyakova O, Teschner D, Wootsch A, Kröhnert J, Steinhauer B, Sauer H, Toth L, Jentoft FC, Knop-Gericke A, Paál Z, Schlögl R (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J Catal 237:17–28

    Article  CAS  Google Scholar 

  6. Wang L, Chen J, Patel A, Rudolph V, Zhu Z (2012) Catalytic performance of Ru nanoparticles supported on different mesoporous silicas for preferential oxidation of CO in H2-rich atmosphere. Appl Catal A 447–448:200–209

  7. Han YF, Kahlich MJ, Kinne M, Behm RJ (2004) CO removal from realistic methanol reformate via preferential oxidation—performance of a Rh/MgO catalyst and comparison to Ru/γ-Al2O3, and Pt/γ-Al2O3, Appl Catal B 50:209–218

    Article  CAS  Google Scholar 

  8. Adlhart Otto J, Cohn Johann GE, Walter E, Straschil Heinrich K (1971) Process for oxidation of carbon monoxide. Google Patents

  9. Kim YH, Park ED, Lee HC, Lee D, Lee KH (2009) Preferential CO oxidation over supported noble metal catalysts. Catal Today 146:253–259

    Article  CAS  Google Scholar 

  10. Avgouropoulos G, Ioannides T (2003) Selective CO oxidation over CuO–CeO2 catalysts prepared via the urea–nitrate combustion method. Appl Catal A 244:155–167

    Article  CAS  Google Scholar 

  11. Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl Catal A 232:159–168

    Article  CAS  Google Scholar 

  12. Teng Y, Sakurai H, Ueda A, Kobayashi T (1999) Oxidative removal of co contained in hydrogen by using metal oxide catalysts. Int J Hydr Energy 24:355–358

    Article  CAS  Google Scholar 

  13. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts. J Catal 153:304–316

    Article  CAS  Google Scholar 

  14. Liu Y, Fu Q, Stephanopoulos MF (2004) Preferential oxidation of CO in H2 over CuO–CeO2 catalysts. Catal Today 93–95:241–246

    Article  Google Scholar 

  15. Guo Q, Liu Y (2008) MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases. Appl Catal B 82:19–26

    Article  CAS  Google Scholar 

  16. Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93:93–100

    Article  CAS  Google Scholar 

  17. Wu Z, Zhu H, Qin Z, Wang H, Huang L, Wang J (2010) Preferential oxidation of CO in H2-rich stream over CuO/Ce1–xTixO2 catalysts. Appl Catal B 98:204–212

    Article  CAS  Google Scholar 

  18. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts. J Catal 153:317–332

    Article  CAS  Google Scholar 

  19. Sedmak G, Hočevar S, Levec J (2004) Transient kinetic model of CO oxidation over a nanostructured Cu0.1Ce0.9O2–y catalyst. J Catal 222:87–99

    Article  CAS  Google Scholar 

  20. Martínez-Arias A, Gamarra D, Hungría BA, Fernández-García M, Munuera G, Hornés A, Bera P, Conesa CJ, Cámara LA (2013) Characterization of active sites/entities and redox/catalytic correlations in copper–ceria-based catalysts for preferential oxidation of CO in H2-rich streams. Catalysts 3(2):378–400

  21. Sedmak G, Hočevar S, Levec J (2003) Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2–y catalyst. J Catal 213:135–150

    Article  CAS  Google Scholar 

  22. Wang JB, Lin S-C, Huang T-J (2002) Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria. Appl Catal A 232:107–120

    Article  CAS  Google Scholar 

  23. Lin R, Luo M-F, Zhong Y-J, Yan Z-L, Liu G-Y, Liu W-P (2003) Comparative study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation. Appl Catal A 255:331–336

    Article  CAS  Google Scholar 

  24. Chen Y-Z, Liaw B-J, Chang W-C, Huang C-T (2007) Selective oxidation of CO in excess hydrogen over catalysts. Int J Hydr Energy 32:4550–4558

    Article  CAS  Google Scholar 

  25. Cecilia JA, Arango-Díaz A, Rico-Pérez V, Bueno-López A, Rodríguez-Castellón E (2015) The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO–CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catal Today 253:115–125

    Article  CAS  Google Scholar 

  26. Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandan P, Senthil Kumaran RS, Sachin M, Shetti VN (2004) Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system. J Catal 221:455–465

    Article  CAS  Google Scholar 

  27. Ayastuy JL, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz MA (2012) Selective CO oxidation in H2 streams on CuO/CexZr1–xO2 catalysts: correlation between activity and low temperature reducibility. Int J Hydr Energy 37:1993–2006

    Article  CAS  Google Scholar 

  28. Martínez-Arias A, Hungría AB, Fernández-García M, Conesa JC, Munuera G (2005) Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce,M)Ox (M = Zr, Tb) catalysts. J Power Sources 151:32–42

    Article  Google Scholar 

  29. Hennings U, Reimert R (2007) Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel cell applications. Appl Catal B 70:498–508

    Article  CAS  Google Scholar 

  30. Hernández WY, Laguna OH, Centeno MA, Odriozola JA (2011) Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria. J Solid State Chem 184:3014–3020

    Article  Google Scholar 

  31. Colussi S, de Leitenburg C, Dolcetti G, Trovarelli A (2004) The role of rare earth oxides as promoters and stabilizers in combustion catalysts. J Alloys Compd 374:387–392

    Article  CAS  Google Scholar 

  32. Lee S, Bae M, Bae J, Katikaneni SP (2015) Ni–Me/Ce0.9Gd0.1O2–x (Me: Rh, Pt and Ru) catalysts for diesel pre-reforming. Int J Hydr Energy 40:3207–3216

    Article  CAS  Google Scholar 

  33. Mosqueda B, Toyir J, Kaddouri A, Gélin P (2009) Steam reforming of methane under water deficient conditions over gadolinium-doped ceria. Appl Catal B 88:361–367

    Article  CAS  Google Scholar 

  34. He D, Hao H, Chen D, Liu J, Yu J, Lu J, Liu F, Wan G, He S, Luo Y (2017) Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. Catal Today 281(Part 3):559–565

    Article  CAS  Google Scholar 

  35. Marina OA, Bagger C, Primdahl S, Mogensen M (1999) A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123:199–208

    Article  CAS  Google Scholar 

  36. Andreeva D, Ivanov I, Ilieva L, Abrashev MV, Zanella R, Sobczak JW, Lisowski W, Kantcheva M, Avdeev G, Petrov K (2009) Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method. Appl Catal A 357:159–169

    Article  CAS  Google Scholar 

  37. Ilieva L, Pantaleo G, Ivanov I, Zanella R, Venezia AM, Andreeva D (2009) A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. Int J Hydr Energy 34:6505–6515

    Article  CAS  Google Scholar 

  38. Purohit RD, Sharma BP, Pillai KT, Tyagi AK (2001) Ultrafine ceria powders via glycine-nitrate combustion. Mater Res Bull 36:2711–2721

    Article  CAS  Google Scholar 

  39. Grazulis S, Chateigner D, Downs RT, Yokochi AFT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography open database: an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  CAS  Google Scholar 

  40. Lee HC, Kim DH (2008) Kinetics of CO and H2 oxidation over CuO–CeO2 catalyst in H2 mixtures with CO2 and H2O. Catal Today 132:109–116

    Article  CAS  Google Scholar 

  41. Holland B (2003) Determination of both mesopores and macropores in three-dimensional ordered porous materials by nitrogen adsorption. J Porous Mater 10:17–22

    Article  CAS  Google Scholar 

  42. Hennings U, Reimert R (2007) Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas. Appl Catal A 325:41–49

    Article  CAS  Google Scholar 

  43. Hong SJ, Virkar AV (1995) Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J Am Ceram Soc 78:433–439

    Article  CAS  Google Scholar 

  44. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  45. Zhou XD, Huebner W (2001) Size-induced lattice relaxation in CeO2 nanoparticles. Appl Phys Lett 79:3512–3514

    Article  CAS  Google Scholar 

  46. Halder NC, Wagner CNJ (1966) Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallograph 20:312–313

    Article  CAS  Google Scholar 

  47. Si R, Zhang Y-W, Li S-J, Lin B-X, Yan C-H (2004) Urea-based hydrothermally derived homogeneous nanostructured Ce1−xZrxO2 (x = 0–0.8) solid solutions: a strong correlation between oxygen storage capacity and lattice strain. J Phys Chem B 108:12481–12488

    Article  CAS  Google Scholar 

  48. Gamarra D, Munuera G, Hungría AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodríguez JA, Martínez-Arias A (2007) Structure–activity relationship in nanostructured copper–ceria-based preferential CO oxidation catalysts. J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  49. Mahata T, Das G, Mishra RK, Sharma BP (2005) Combustion synthesis of gadolinia doped ceria powder. J Alloys Compd 391:129–135

    Article  CAS  Google Scholar 

  50. Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B 144:900–908

    Article  CAS  Google Scholar 

  51. Taniguchi T, Watanabe T, Sugiyama N, Subramani AK, Wagata H, Matsushita N, Yoshimura M (2009) Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793

    Article  CAS  Google Scholar 

  52. Weber WH, Hass KC, McBride JR (1993) Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Phys Rev B 48:178–185

    Article  CAS  Google Scholar 

  53. Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50:13297–13307

    Article  CAS  Google Scholar 

  54. Prasad DH, Park SY, Ji HI, Kim HR, Son JW, Kim BK, Lee HW, Lee JH (2012) Structural characterization and catalytic activity of Ce0.65Zr0.25RE0.1O2–δ nanocrystalline powders synthesized by the glycine-nitrate process. J Phys Chem C 116:3467–3476

    Article  CAS  Google Scholar 

  55. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Book  Google Scholar 

  56. Hegde MS, Madras G, Patil KC (2009) Noble metal ionic catalysts. Acc Chem Res 42:704–712

    Article  CAS  Google Scholar 

  57. Konsolakis M, Ioakeimidis Z (2014) Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions. Appl Surf Sci 320:244–255

    Article  CAS  Google Scholar 

  58. Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J Catal 225:267–277

    Article  CAS  Google Scholar 

  59. Zou H, Dong X, Lin W (2006) Selective CO oxidation in hydrogen-rich gas over CuO/CeO2 catalysts. Appl Surf Sci 253:2893–2898

    Article  CAS  Google Scholar 

  60. Ayastuy JL, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz MA (2010) CO oxidation on CeXZr1–XO2-supported CuO catalysts: correlation between activity and support composition. Appl Catal A 387:119–128

    Article  CAS  Google Scholar 

  61. Pintar A, Batista J, Hočevar S (2005) TPR, TPO, and TPD examinations of Cu0.15Ce0.85O2–y mixed oxides prepared by co-precipitation, by the sol–gel peroxide route, and by citric acid-assisted synthesis. J Colloid Interface Sci 285:218–231

    Article  CAS  Google Scholar 

  62. Liu W, Flytzani-Stephanopoulos M (1996) Transition metal-promoted oxidation catalysis by fluorite oxides: a study of CO oxidation over Cu·CeO2. Chem Eng J Biochem Eng J 64:283–294

    Article  CAS  Google Scholar 

  63. Kundakovic L, Flytzani-Stephanopoulos M (1998) Reduction characteristics of copper oxide in cerium and zirconium oxide systems., Appl Catal A 171:13–29

    Article  CAS  Google Scholar 

  64. Luo M-F, Zhong Y-J, Yuan X-X, Zheng X-M (1997) TPR and TPD studies of CuOCeO2 catalysts for low temperature CO oxidation. Appl Catal A 162:121–131

    Article  CAS  Google Scholar 

  65. Sanchez MG, Gazquez JL (1987) Oxygen vacancy model in strong metal–support interaction. J Catal 104:120–135

    Article  CAS  Google Scholar 

  66. Holmgren A, Azarnoush F, Fridell E (1999) Influence of pre-treatment on the low-temperature activity of Pt/ceria. Appl Catal B 22:49–61

    Article  CAS  Google Scholar 

  67. Kotani A, Jo T, Parlebas J (1988) Many-body effects in core-level spectroscopy of rare-earth compounds. Adv Phys 37:37–85

    Article  CAS  Google Scholar 

  68. Avgouropoulos G, Ioannides T (2006) Effect of synthesis parameters on catalytic properties of CuO–CeO2. Appl Catal B 67:1–11

    Article  CAS  Google Scholar 

  69. Svintsitskiy DA, Kardash TY, Stonkus OA, Slavinskaya EM, Stadnichenko AI, Koscheev SV, Chupakhin AP, Boronin AI (2013) In situ XRD, XPS, TEM, and TPR Study of highly active in CO oxidation CuO nanopowders. J Phys Chem C 117:14588–14599

    Article  CAS  Google Scholar 

  70. Dow WP, Huang TJ (1994) Effects of oxygen vacancy of Yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst. J Catal 147:322–332

    Article  CAS  Google Scholar 

  71. Choi Y, Stenger HG (2003) Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J Power Sources 124:432–439

    Article  CAS  Google Scholar 

  72. Ahluwalia RK, Zhang Q, Chmielewski DJ, Lauzze KC, Inbody MA (2005) Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications. Catal Today 99:271–283

    Article  CAS  Google Scholar 

  73. Gamarra D, Martinez-Arias A (2009) Preferential oxidation of CO in rich H-2 over CuO/CeO2: operando-DRIFTS analysis of deactivating effect of CO2 and H2O. J Catal 263:189–195

    Article  CAS  Google Scholar 

  74. Di Benedetto A, Landi G, Lisi L, Russo G (2013) Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst. Appl Catal B 142–143:169–177

    Article  Google Scholar 

  75. Gawade P, Bayram B, Alexander A-MC, Ozkan US (2012) Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: effect of cobalt loading. Appl Catal B 128:21–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20153010031930). Also, this work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (2011–0031569). Additionally, the authors with to thank Saudi Aramco, Saudi Arabia for the financial assistance and permission to publish results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joongmyeon Bae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Yoo, J.D., Kim, K. et al. Negative Effects of Dopants on Copper–Ceria Catalysts for CO Preferential Oxidation Under the Presence of CO2 and H2O. Catal Lett 147, 2987–3003 (2017). https://doi.org/10.1007/s10562-017-2188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2188-0

Keywords

Navigation