Skip to main content
Log in

Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dehydrogenation of propane to propene is one of the important reactions for the production of higher-value chemical intermediates. In the commercial processes, platinum- or chromium oxide-based catalysts have been used for catalytic propane dehydrogenation. Herein, we first report that bulk tungsten oxide can serve as the catalyst for propane dehydrogenation. Tungsten oxide is activated by hydrogen pretreatment and/or co-feeding of hydrogen. Its catalytic activity strongly depends on hydrogen pretreatment time and partial pressure of hydrogen in the feed gas. The activation of tungsten oxide by hydrogen is attributed to reduction of the metal oxide and presence of multivalent oxidation states. Comparison of the catalytic performance of partially reduced WO3−x to other highly active metal oxides shows that WO3−x exhibits superior catalytic activity and selectivity than Cr2O3 and Ga2O3. The findings of this work provide the possibility for activation of metal oxides for catalytic reactions and the opportunity for the development of new type of catalytic systems utilizing partially reduced metal oxides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    Article  CAS  Google Scholar 

  2. McFarland E (2012) Science 338:340–342

    Article  CAS  Google Scholar 

  3. Kumar MS, Chen D, Holmen A, Walmsley JC (2009) Catal Today 142:17–23

    Article  Google Scholar 

  4. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463–467

    Article  CAS  Google Scholar 

  5. Larsson M, Hulten M, Blekkan EA, Andersson B (1996) J Catal 164:44–53

  6. Gascon J, Tellez C, Herguido J, Menendez M (2003) Appl Catal A 248:105–116

    Article  CAS  Google Scholar 

  7. Pham HN, Sattler JJHB, Weckhuysen BM, Datye AK (2016) ACS Catal 6:2257–2264

    Article  CAS  Google Scholar 

  8. Liu G, Zeng L, Zhao ZJ, Tian H, Wu TF, Gong JL (2016) ACS Catal 6:2158–2162

    Article  CAS  Google Scholar 

  9. Weckhuysen BM, Bensalem A, Schoonheydt RA (1998) J Chem Soc Faraday Trans 94:2011–2014

    Article  CAS  Google Scholar 

  10. Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Verhoeven TWGM, Koers EJ et al (2014) Angew Chem Int Ed 53:9251–9256

    Article  CAS  Google Scholar 

  11. Zheng B, Hua WM, Yue YH, Gao Z (2005) J Catal 232:143–151

    Article  CAS  Google Scholar 

  12. Sun YN, Wu YM, Tao L, Shan HH, Wang GW, Li CY (2015) J Mol Catal A 397:120–126

    Article  CAS  Google Scholar 

  13. Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343–351

    Article  CAS  Google Scholar 

  14. Tan S, Kim SJ, Moore JS, Liu YJ, Dixit RS, Pendergast JG, Sholl DS, Nair S, Jones CW (2016) ChemCatChem 8:214–221

    Article  CAS  Google Scholar 

  15. Otroshchenko T, Sokolov S, Stoyanova M, Kondratenko VA, Rodemerck U, Linke D, Kondratenko EV (2015) Angew Chem Int Ed 54:15880–15883

    Article  CAS  Google Scholar 

  16. Perez-Reina FJ, Rodriguez-Castellon E, Jimenez-Lopez A (1999) Langmuir 15:8421–8428

    Article  CAS  Google Scholar 

  17. Chen M, Xu J, Su FZ, Liu YM, Cao Y, He HY, Fan KN (2008) J Catal 256:293–300

    Article  CAS  Google Scholar 

  18. Halasz J, Konya Z, Fudala A, Kiricsi I (1996) Catal Today 31:293–304

    Article  CAS  Google Scholar 

  19. Zhao ZJ, Chiu CC, Gong JL (2015) Chem Sci 6:4403–4425

    Article  CAS  Google Scholar 

  20. Liu G, Zhao ZJ, Wu TF, Zeng L, Gong JL (2016) ACS Catal 6:5207–5214

    Article  CAS  Google Scholar 

  21. Liu Y, Luo C, Liu HC (2012) Angew Chem Int Ed 51:3249–3253

    Article  CAS  Google Scholar 

  22. Zheng HD, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  23. Manthiram K, Alivisatos AP (2012) J Am Chem Soc 134:3995–3998

    Article  CAS  Google Scholar 

  24. Deb SK (2008) Sol Energy Mater Sol Cells 92:245–258

    Article  CAS  Google Scholar 

  25. Song JJ, Huang ZF, Pan L, Zou JJ, Zhang XW, Wang L (2015) ACS Catal 5:6594–6599

    Article  CAS  Google Scholar 

  26. Li YH, Liu PF, Pan LF, Wang HF, Yang ZZ, Zheng LR; Hu P, Zhao HJ, Gu L, Yang HG (2015) Nat Commun 6

  27. Belatel H, Al-Kandari, H, Al-Kharafi F, Garin F, Katrib A (2007) Appl Catal A 318:227–233

    Article  CAS  Google Scholar 

  28. Barton DG, Soled SL, Meitzner GD, Fuentes GA, Iglesia E (1999) J Catal 181:57–72

    Article  CAS  Google Scholar 

  29. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155

    Article  CAS  Google Scholar 

  30. Shi JN, Allara DL (1996) Langmuir 12:5099–5108

    Article  CAS  Google Scholar 

  31. Weckhuysen BM, Verberckmoes AA, Debaere J, Ooms K, Langhans I, Schoonheydt RA (2000) J Mol Catal A 151:pp 115–131

    Article  CAS  Google Scholar 

  32. Cavani F, Koutyrev M, Trifiro F, Bartolini A, Ghisletti D, Iezzi R, Santucci A, DelPiero G (1996) J Catal 158:236–250

    Article  CAS  Google Scholar 

  33. Hakuli A, Harlin ME, Backman LB, Krause AOI (1999) J Catal 184:349–356

    Article  CAS  Google Scholar 

  34. Derossi S, Ferraris G, Fremiotti S, Garrone E, Ghiotti G, Campa MC, Indovina V (1994) J Catal 148:36–46

    Article  CAS  Google Scholar 

  35. Logie V, Wehrer P, Katrib A, Maire G (2000) J Catal 189:438–448

    Article  CAS  Google Scholar 

  36. Katrib A, Logie V, Saurel N, Wehrer P, Hilaire L, Maire G (1997) Surf Sci 377:754–758

    Article  Google Scholar 

  37. Hemming F, Wehrer P, Katrib A, Maire G (1997) J Mol Catal A 124:39–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Dow Chemical Company through funding for the Core–Shell Catalysis Project, Contract No. 20120984 to University of California, Berkeley. The user project at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to Dr. David Barton, Dr. Pete Nickias, and Dr. Trevor Ewers from Dow Chemical Co. for fruitful discussions. Joyce R. Araujo and B.S. Archanjo acknowledge CNPq for their fellowships 234217/2014-6 and 234217/2014-6, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Paul Alivisatos or Gabor A. Somorjai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y., Araujo, J.R., Melaet, G. et al. Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. Catal Lett 147, 622–632 (2017). https://doi.org/10.1007/s10562-016-1915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1915-2

Keywords

Navigation