Skip to main content
Log in

A Facile Route to Fabricate Effective Pt/IrO2 Bifunctional Catalyst for Unitized Regenerative Fuel Cell

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to fabricate effective bifunctional oxygen catalyst, IrO2 nanoparticles have been synthesized by hydrothermal method, and Pt/IrO2 bifunctional catalyst is then prepared by a microwave-assisted polyol process. X-ray diffraction and transmission electron microscopy are employed to characterize the catalysts, which reveal that Pt with a particle size of 2–3 nm is deposited on IrO2 surface. Electrochemical tests indicate that Pt/IrO2 bifunctional catalyst possesses much higher catalytic activity and durability towards both oxygen reduction reaction and oxygen evolution reaction than pure Pt or pure IrO2. Kinetic analysis shows that the oxygen reduction reaction on Pt/IrO2 catalyst mainly follows four-electron pathway.

Graphical Abstract

Ultrafine Pt particles (2–3 nm) are supported on the surface of amorphous IrO2 to form Pt/IrO2 bifunctional catalyst that possesses higher catalytic activities towards both OER and ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitlitsky F, Myers B, Andrew H (1998) Energy Fuels 12:56–71

    Article  CAS  Google Scholar 

  2. Sone Y, Ueno M, Kuwajima S (2004) J Power Sources 137:269–276

    Article  CAS  Google Scholar 

  3. Book of Abstract for the First International Conference on Advanced Lithium Batteries for Automobile Applications, Argonne: 2008

  4. Yim SD, Lee WY, Yoon YG, Sohn YJ, Park GG, Yang TH (2004) Electrochim Acta 50:713–718

    Article  CAS  Google Scholar 

  5. Zhang YJ, Wang C, Wan NF, Mao ZQ (2007) Int J Hydrogen Energy 32:400–404

    Article  CAS  Google Scholar 

  6. Lee HY, Kim JY, Park JH, Joe YG, Lee TH (2004) J Power Sources 131:188–193

    Article  CAS  Google Scholar 

  7. Bolwin K (1993) J Power Sources 45:187–194

    Article  CAS  Google Scholar 

  8. Barbira F, Moltera T, Daltonb L (2005) Int J Hydrogen Energy 30:351–357

    Article  Google Scholar 

  9. Bergen A, Schmeister T, Pitt L (2007) J Power Sources 164:624–630

    Article  CAS  Google Scholar 

  10. Burke KA (1999) IEEE AES Syst Mag 12:23–34

    Article  Google Scholar 

  11. Maclay JD, Samuelsen GS (2006) Int J Hydrogen Energy 31:994–1009

    Article  CAS  Google Scholar 

  12. W. F. Smith (2001) IEEE 657–661

  13. Andrews A (2009) Int J Hydrogen Energy 34:8157–8170

    Article  Google Scholar 

  14. Ouattara L, Fierro S, Frey O et al (2000) Appl Electrochem 39:1361–1367

    Article  Google Scholar 

  15. Chen GY, Delafuente DA, Sarangapani S, Zallouk TE (2001) Catal Today 67:341–355

    Article  CAS  Google Scholar 

  16. Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2000) J Electrochem Soc 147:2018–2022

    Article  CAS  Google Scholar 

  17. Lee WH, Kim HS (2011) Catal Commun 12:408–411

    Article  CAS  Google Scholar 

  18. Zhang S, Shao YY, Yin GP, Lin YH (2010) J Mater Chem 20:2826–2830

    Article  CAS  Google Scholar 

  19. Shao YY, Zhang S, Wang CM, Nie ZM, Liu J, Wang Y (2010) J Power Sources 195:4600–4605

    Article  CAS  Google Scholar 

  20. Wang JJ, Yin GP, Chen YG, Li RY, Sun XL (2009) Int J Hydrogen Energy 34:8270–8275

    Article  CAS  Google Scholar 

  21. Kong FD, Zhang S, Yin GP, Zhang N, Wang ZB, Du CY (2012) Electrochem Commun 14:63–66

    Article  CAS  Google Scholar 

  22. Zhang S, Shao YY, Yin GP, Lin YH (2010) Angew Chem Int Ed 49:2211–2214

    Article  CAS  Google Scholar 

  23. Kong FD, Zhang S, Yin GP, Wang ZB, Du CY, Chen GY, Zhang N (2012) Int J Hydrogen Energy 37:59–67

    Article  CAS  Google Scholar 

  24. Jung HY, Ark PS, Popov B (2009) J Power Sources 191:357–361

    Article  CAS  Google Scholar 

  25. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (1979) J Phys Chem B 106(2002):11970–11971

    Google Scholar 

  26. Maruyama J, Abe I (2003) Electrochim Acta 48:1443–1450

    Article  CAS  Google Scholar 

  27. Sun A, Franc J, Macdonald DD (2006) J Electrochem Soc 153:B260–B277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21276058, 21106024, and 21173062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge-Ping Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, FD., Zhang, S., Yin, GP. et al. A Facile Route to Fabricate Effective Pt/IrO2 Bifunctional Catalyst for Unitized Regenerative Fuel Cell. Catal Lett 144, 242–247 (2014). https://doi.org/10.1007/s10562-013-1150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1150-z

Keywords

Navigation