Skip to main content
Log in

Specific Enzyme-Catalyzed Hydrolysis and Synthesis in Aqueous and Organic Medium Using Biocatalysts with Lipase Activity from Aspergillus niger MYA 135

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, the specific hydrolytic activity of three biocatalysts such as the constitutive mycelium-bound lipase, the induced mycelium-bound lipase and the lyophilized induced supernatant from A. niger MYA 135 was evaluated in both aqueous and organic media. A direct correlation between activity in water and n-hexane was not observed for the same hydrolytic reaction. The n-hexane/water activity ratio (R O/A) was applied to characterize the activity in organic medium. The three biocatalysts showed R O/A values higher than 1 for hydrolysis of long-chain fatty acid esters, demonstrating a higher specific hydrolytic activity in organic solvent than in water. A different behavior was observed during hydrolysis of middle-chain fatty acid esters, which was higher in aqueous medium (R O/A < 1). Transesterifications of different alcohols with various p-nitrophenyl derivatives using all three biocatalysts preparations were also evaluated in n-hexane. For methanolysis and ethanolysis, the constitutive mycelium-bound lipase displayed an interesting preference for C16 substrate (p-nitrophenyl palmitate). The induced mycelium-bound lipase showed high specific transesterification activities in the presence of water-miscible alcohols and middle-chain fatty acid esters (p-nitrophenyl caprate and p-nitrophenyl laurate), being the highest specific transesterification activity (91.4 ± 1.7 mU/gdw) observed in a reaction mixture containing propanol and p-nitrophenyl laurate. Finally, both p-nitrophenyl caprate (C10) and p-nitrophenyl laurate (C12) were preferentially methanolized by the lyophilized induced supernatant, being this lipase activity the most specific biocatalyst preparation under transesterification conditions. A selectivity-based analysis of each lipase preparation toward transesterification or hydrolysis in organic medium was evaluated as well.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saxena RK, Sheoran A, Giri B (2003) J Microbiol Methods 52:1

    Article  CAS  Google Scholar 

  2. Aravindan R, Anbumathi P, Viruthagiri T (2007) Indian J Biotechnol 6:141

    CAS  Google Scholar 

  3. Rajendran A, Palanisamy A, Thangavelu V (2009) Braz Arch Biol Technol 52:207

    Article  CAS  Google Scholar 

  4. Trodler P, Pleiss J (2008) BMC Struct Biol 8:9

    Article  Google Scholar 

  5. Chakravorty D, Parameswaran S, Dubey VK, Patra S (2012) Appl Biochem Biotechnol 167:439

    Article  CAS  Google Scholar 

  6. Verma ML, Azmi W, Kanwar SS (2008) Acta Microbiol Immunol Hung 55:265

    Article  CAS  Google Scholar 

  7. Halling PJ (2004) Philos Trans R Soc Lond B 359:1287

    Article  CAS  Google Scholar 

  8. Zaks A, Klibanov AM (1985) Proc Natl Acad Sci 82:3192

    Article  CAS  Google Scholar 

  9. Pencreac′h G, Baratti JC (2001) Enzyme Microb Technol 28:473

    Article  Google Scholar 

  10. Vaysse L, Ly A, Moulin G, Dubreucq E (2002) Enzyme Microb Technol 31:648

    Article  CAS  Google Scholar 

  11. Peters GH, van Aalten DMF, Svendsen A, Bywater R (1997) Protein Eng 10:149

    Article  CAS  Google Scholar 

  12. Gaskin DJH, Romojaro A, Turner NA, Jenkins J, Vulfson EN (2001) Biotechnol Bioeng 73:433

    Article  CAS  Google Scholar 

  13. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Enzyme Microb Technol 40:1451

    Article  CAS  Google Scholar 

  14. Persson M, Mladenoska I, Wehtje E, Adlercreutz P (2002) Enzyme Microb Technol 31:833

    Article  CAS  Google Scholar 

  15. Ye P, Xu Z, Wanga Z, Wub J, Denga H, Setac P (2005) J Mol Catal B 32:115

    Article  CAS  Google Scholar 

  16. Pera LM, Baigorí MD, Castro GR (2008) Biotransformations (Chap 21). In: Pandey A (ed) Advances in fermentation technology. Asiatech, New Delhi

    Google Scholar 

  17. Guang J, Bierma TJ (2010) Whole-cell biocatalysts for producing biodiesel from waste greases. ISTC Rep. Illinois Sustainable Technology Center, Champaign

  18. Fokuda H, Hama S, Tamalampudi S, Noda H (2008) Trends Biotechnol 26:668

    Article  Google Scholar 

  19. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  20. Winkler UK, Stuckman M (1979) J Bacteriol 138:663

    CAS  Google Scholar 

  21. Pencreac′h G, Baratti JC (1996) Enzyme Microb Technol 18:417

    Article  Google Scholar 

  22. Romero CM, Baigori MD, Pera LM (2007) Appl Microbiol Biotechnol 76:861

    Article  CAS  Google Scholar 

  23. Pera LM, Romero CM, Baigorí MD, Castro GR (2006) Food Technol Biotechnol 44:247

    CAS  Google Scholar 

  24. Anderson VE, Ruszczycky MW, Harris ME (2006) Chem Rev 106:3236

    Article  CAS  Google Scholar 

  25. Colin VL, Baigorí MD, Pera LM (2011) J Basic Microbiol 51:236

    Article  CAS  Google Scholar 

  26. Romero CM, Pera LM, Loto F, Vallejos C, Castro GR, Baigorí MD (2012) Biocatal Agric Biotechnol 1:25

    CAS  Google Scholar 

  27. Flores MV, Sewalt JJW, Janssen AEM, van der Padt A (2000) Biotechnol Bioeng 67:364

    Article  CAS  Google Scholar 

  28. Lecointe C, Dubreucq E, Galzy P (1996) Biotechnol Lett 18:869

    Article  CAS  Google Scholar 

  29. Carrasco-Lopez C, Godoy C, Rivas B, Fernandez-Lorente G, Palomo JM, Guisan JM, Fernandez-Lafuente R, Martínez-Ripoll M, Hermoso JA (2009) J Biol Chem 284:4365

    Article  CAS  Google Scholar 

  30. Eppler RK (2006) Proc Natl Acad Sci 103:5706

    Article  CAS  Google Scholar 

  31. Norin M, Haeffner F, Hult K, Edholm O (1994) Biophys J 67:548

    Article  CAS  Google Scholar 

  32. Serdakowski AL, Dordick JS (2007) Trends Biotechnol 26:48

    Article  Google Scholar 

  33. Bone S (1987) Biochim Biophys Acta 916:128

    Article  CAS  Google Scholar 

  34. Zaks A, Klibanov AM (1988) Biol Chem 263:8017

    CAS  Google Scholar 

  35. Bilyk A, Bistline RG, Haas MJ Jr, Feairheller SH (1991) JAOCS 68:320

    Article  CAS  Google Scholar 

  36. Nie K, Xie F, Wang F, Tan T (2006) J Mol Catal B 43:142

    Article  CAS  Google Scholar 

  37. Smith PC, Ngothai Y, Nguyen QD, O`Neill BK (2010) Renew Energy 449:1145

    Article  Google Scholar 

  38. Kumar A, Sharma P, Kanwar SS (2012) Int J Inst Pharm Life Sci 2:91

    Google Scholar 

Download references

Acknowledgments

This work was supported by PIP 297 (CONICET) and CIUNT 26/D 409 (UNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D. Baigori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, C.M., Pera, L.M., Loto, F. et al. Specific Enzyme-Catalyzed Hydrolysis and Synthesis in Aqueous and Organic Medium Using Biocatalysts with Lipase Activity from Aspergillus niger MYA 135. Catal Lett 142, 1361–1368 (2012). https://doi.org/10.1007/s10562-012-0901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0901-6

Keywords

Navigation