Skip to main content
Log in

Assessment of the Catalytic Activities of Novel Brönsted Acidic Ionic Liquid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Brönsted acidic ionic liquids (BILs) were synthesized by a two step synthetic protocol. Catalytic activities of BILs were assessed by means of suitable catalytic reactions such as acylation of 2-methoxynapthalene with acetic anhydride, Biginelli reaction to synthesize 3,4-dihydropyrimidin-2(1H)-one, stereoselective synthesis of β-amino ketone via direct Mannich-type reaction and esterification of hexanoic acid with benzyl alcohol. Catalytic activities of BILs were high when compared with those of solid acid catalysts such as ZSM-5, beta, dealuminated beta and Al-SBA-15. BILs catalysts were found to be highly stereo/regio-selective for above mentioned reactions. Novel BILs catalyst offers several attractive features such as low cost, high catalytic activity/selectivity and recyclability.

Graphical Abstract

N-methylimidazole and pyridine derived Brönsted acidic ionic liquids were found to be highly active and stereo/regio-selective compared to various solid acid catalysts in fine chemicals (1–5) synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2

Similar content being viewed by others

References

  1. Corma A, Garcia H (2003) Chem Rev 103:4307

    Article  CAS  Google Scholar 

  2. Corma A, Garcia H (2002) Chem Rev 102:3837

    Article  CAS  Google Scholar 

  3. Corma A (1997) Chem Rev 97:2373

    Article  CAS  Google Scholar 

  4. Corma A (1995) Chem Rev 95:559

    Article  CAS  Google Scholar 

  5. Smith MB, March J (2001) March’s advanced organic chemistry, chap 8. Wiley-Interscience, New York

  6. Ritter SK (2001) Chem Eng News 79:63

    Google Scholar 

  7. Stöcker M (2005) Microporous Mesoporous Mater 82:257

    Article  Google Scholar 

  8. Ishihara K, Hasegama A, Yamamoto H (2001) Angew Chem Int Ed 40:4077

    Article  CAS  Google Scholar 

  9. Srivastava R, Choi M, Ryoo R (2006) Chem Commun:4489

  10. Earle MJ, Seddon KR (2000) Pure Appl Chem 72:1391

    Article  CAS  Google Scholar 

  11. Welton T (1999) Chem Rev 99:2073

    Article  Google Scholar 

  12. Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) J Org Chem 51:480

    Article  CAS  Google Scholar 

  13. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun:2010

  14. Kim YJ, Varma RS (2005) J Org Chem 70:7882

    Article  CAS  Google Scholar 

  15. Cole AC, Jensen JL, Ntai L, Loan K, Tran T, Weaver KJ, Forbes DC, Davis JH Jr (2002) J Am Chem Soc 124:5962

    Article  CAS  Google Scholar 

  16. Huang JF, Baker GA, Luo H, Hong K, Li QF, Bjerrum NJ, Dai S (2006) Green Chem 8:599

    Article  CAS  Google Scholar 

  17. Li X, Eli W (2008) J Mol Catal A 279:159

    Article  CAS  Google Scholar 

  18. Srivastava R, Iwasa N, Fujita SI, Arai M (2009) Catal Lett 130:655

    Article  CAS  Google Scholar 

  19. Srivastava R, Srinivas D, Ratnasamy P (2006) Microporous Mesoporous Mater 90:314

    Article  CAS  Google Scholar 

  20. Gazz, Biginelli P (1893) Chem Ital 23:360

    Google Scholar 

  21. Chen X, Xu X, Liu H, Cun L, Gong L (2006) J Am Chem Soc 128:14802

    Article  CAS  Google Scholar 

  22. Nilsson BL, Overman LE (2006) J Org Chem 71:7706

    Article  CAS  Google Scholar 

  23. Ahmed N, van Lier JE (2007) Tetrahedron Lett 48:5407

    Article  CAS  Google Scholar 

  24. Hassani Z, Islami MR, Kalantari M (2006) Biorg Med Chem Lett 16:4479

    Article  CAS  Google Scholar 

  25. Suzuki I, Suzumura Y, Takeda K (2006) Tetrahedron Lett 47:7861

    Article  CAS  Google Scholar 

  26. Muller R, Goesmann H, Waldmann H (1999) Angew Chem Int Ed 38:184

    Article  CAS  Google Scholar 

  27. Arend M, Westerman B (1998) Angew Chem Int Ed 37:1044

    Article  Google Scholar 

  28. Kobyashi S, Ishitani H (1999) Chem Rev 99:1069

    Article  Google Scholar 

  29. Wang YG, Yang YY, Shou WG (2006) Tetrahedron 62:10079

    Article  Google Scholar 

  30. Wang YG, Yang YY, Shou WG (2006) Tetrahedron Lett 47:1845

    Article  Google Scholar 

  31. Azizi N, Torkiyan L, Saidi MR (2006) Org Lett 8:2079

    Article  CAS  Google Scholar 

  32. Eftekhari-Sis B, Abdollahifa A, Hashemi MM, Zirak M (2006) Eur J Org Chem 51:52

    Google Scholar 

  33. Iimura S, Nobutou D, Manabe K, Kobayashi S (2003) Chem Commun:1644

  34. Hayashi Y, Tsuboi W, Ashimine I, Urushima T, Shoji M, Sakai K (2003) Angew Chem Int Ed 42:3677

    Article  CAS  Google Scholar 

  35. Bigdeli MA, Nemati F, Mahdavinia GH (2007) Tetrahedron Lett 48:6801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author thanks Mr. Anu Prathap for his help in NMR and IR measurements. Author thanks Prof. M. K. Surappa, Director, IIT Ropar and Prof. B. D. Gupta, Head, Department of Chemistry, IIT Ropar for their constant encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R. Assessment of the Catalytic Activities of Novel Brönsted Acidic Ionic Liquid Catalysts. Catal Lett 139, 17–25 (2010). https://doi.org/10.1007/s10562-010-0404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0404-2

Keywords

Navigation