Skip to main content
Log in

Synthesis and Dispersion of Dendrimer-Encapsulated Pt Nanoparticles on γ-Al2O3 for the Reduction of NO x by Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dendrimer encapsulated Pt nanoparticles were prepared by using hydroxyl terminated generation four (G4OH) PAMAM dendrimers (DEN) as the templating agents. The encapsulated Pt nanoparticles were dispersed on γ-Al2O3 at room temperature by impregnation. Pt/Al2O3 (DEN) catalysts were then subjected to thermal treatments in oxidizing and reducing atmospheres at different temperatures. These catalysts were characterized by Transmission Electron microscopy (TEM) and In situ Fourier-Transform Infrared (FTIR) spectroscopy. The TEM analysis of the as synthesized catalysts revealed that the Pt nanoparticles were found to be 2–4 nm in size. It is observed that the Pt particle size in 0.5% Pt/Al2O3 (DEN) catalyst increased upon thermal decomposition of the dendrimer. The in situ FTIR results suggested that the presence of oxygen and the Pt nanoparticles in the Pt-dendrimer nanocomposite accelerate the dendrimer decomposition at low temperatures. All the catalysts were tested for the reduction of NO x with CH4 in the temperature range of 250–500 °C. NO x reduction efficiency of Pt/Al2O3 (DEN) catalysts were compared with the Pt/Al2O3 (CON; conventional) catalyst. The conversion of NO x was started from the low temperatures over Pt/Al2O3 (DEN) catalysts. The high selectivity of NO x to N2 of 74% was obtained over 0.5% Pt/Al2O3 (DEN) catalyst at low temperatures around 350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bosch H, Janssen F (1988) Catal Today 2:369

    Article  CAS  Google Scholar 

  2. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B Environ 18:1

    Article  CAS  Google Scholar 

  3. Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS (2008) Appl Catal B Environ 78:301

    Article  CAS  Google Scholar 

  4. Shelef M (1995) Chem Rev 95:209

    Article  CAS  Google Scholar 

  5. Heck RM, Farrauto RJ, Gulati ST, (2002) Catalytic air pollution control: commercial technology. Wiley

  6. Okumura K, Kusakabe T, Niwa M (2003) Appl Catal B Environ 41:137

    Article  CAS  Google Scholar 

  7. Parvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233

    Article  CAS  Google Scholar 

  8. Iwamoto M, Yahiro H, Shundo S, Yuu Y, Mizuno N (1991) Appl Catal 69:L15

    Article  CAS  Google Scholar 

  9. Demicheli M, Hoang LC, Ménézo JC, Barbier J, Pinabiau-Carlier M (1993) Appl Catal A General 97:L11

    Article  CAS  Google Scholar 

  10. He H, Zhang RD, Yu YB, Liu JF (2003) Chin J Catal 24(10):788

    CAS  Google Scholar 

  11. Li Z, Chen B, Huang W, Xie KC (2006) Chem J Chin Univ 27(10):1907

    CAS  Google Scholar 

  12. Lonyi F, Valyon J, Gutierrez L, Ulla MA, Lombardo EA (2007) Appl Catal B Environ 73:1

    Article  CAS  Google Scholar 

  13. Ponec V, Bond GC (1995) Catalysis by metals and alloys, vol 95. Elsevier, Amsterdam

    Google Scholar 

  14. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  15. Sooklal K, Hanus LH, Ploehn HJ, Murphy CJ (1998) Adv Mater 10:1083

    Article  CAS  Google Scholar 

  16. Crooks RM, Zhao M, Sun LJ (1998) J Am Chem Soc 120:4877

    Article  Google Scholar 

  17. Tomalia D, Balogh LA (1998) J Am Chem Soc 120:7355

    Article  Google Scholar 

  18. Niu Y, Crooks RM (2003) Chem Mater 15:3463

    Article  CAS  Google Scholar 

  19. Crooks RM, Zhao M (1999) Adv Mater 11:217

    Article  Google Scholar 

  20. Crooks RM, Sun L (2002) Langmuir 18(21):8233

    Google Scholar 

  21. Velarde-Ortiz R, Larsen G (2002) Chem Mater 14:858

    Article  CAS  Google Scholar 

  22. Lang H, Alan May R, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832

    Article  CAS  Google Scholar 

  23. Lafaye G, Williams CT, Amiridis MD (2004) Catal Lett 96:43

    Article  CAS  Google Scholar 

  24. Deutsch SD, Lafaye G, Liu D, Chandler BD, Williams CT, Amiridis MD (2004) Catal Lett 97:139

    Article  CAS  Google Scholar 

  25. Burch R, Ramli A (1998) Appl Catal B Environ 15:49

    Article  CAS  Google Scholar 

  26. Gates BC (1995) Chem Rev 95:511

    Article  CAS  Google Scholar 

  27. Balint I, Miyazaki A, Aika KI (2002) J Catal 207:66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by a grant (07K1501-01812) from ‘Center for Nanostructured Materials Technology’ under ‘twentyfirst Century Frontier R&D Programs’ of the Ministry of Science and Technology, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon Phil Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.A., Ha, H.P. Synthesis and Dispersion of Dendrimer-Encapsulated Pt Nanoparticles on γ-Al2O3 for the Reduction of NO x by Methane. Catal Lett 136, 177–184 (2010). https://doi.org/10.1007/s10562-009-0234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0234-2

Keywords

Navigation