Skip to main content
Log in

Oxidative Regeneration of Sulfide-fouled Catalysts for Water Treatment

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study tested the stability, activity, and selectivity of an alumina-supported Pd–In bimetallic catalyst during repetitive sulfide fouling and oxidative regeneration conditions. Nitrate reduction with hydrogen was used as the probe reaction in a continuous-flow packed-bed reactor to assess changes in the catalyst structure as a result of the fouling and regeneration processes. Partial regeneration of a severely sulfide-fouled Pd–In catalyst was achieved with a NaOCl/NaHCO3 solution. However, the regenerated catalyst had a reduced activity for NO3 reduction and increased selectivity towards NH3. Analysis of the catalyst bed after regeneration experiments using XPS, ICP-MS, and BET surface area revealed that bulk structural transformations of the Pd–In bimetallic catalyst occurred, as a result of preferential Pd dissolution near the column influent. The dissolved Pd showed limited mobility in the column, and was re-deposited on the catalyst, resulting in Pd enrichment on the catalyst surface and redistribution of Pd towards the end of the column. These changes along with residual sulfur content on the catalyst surface were likely responsible for the increased selectivity towards NH3. These results indicate the importance of limiting the exposure of reduced sulfur species to Pd-based catalysts, especially when treating contaminants like NO3 , where product selectivity is a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schreier CG, Reinhard M (1995) Chemosphere 31:3475–3487

    Article  CAS  Google Scholar 

  2. Lowry GV, Reinhard M (2000) Environ Sci Technol 34:3217–3223

    Article  CAS  Google Scholar 

  3. Muftikian R, Fernando Q, Korte N (1995) Water Res 29:2434–2439

    Article  CAS  Google Scholar 

  4. Kovenklioglu S, Cao Z, Shah D, Farrauto RJ, Balko EN (1992) AIChE J 38:1003–1012

    Article  CAS  Google Scholar 

  5. Lowry GV, Reinhard M (1999) Environ Sci Technol 33:1905–1910

    Article  CAS  Google Scholar 

  6. Schuth C, Reinhard M (1998) Appl Catal B 18:215–221

    Article  CAS  Google Scholar 

  7. Hoke JB, Gramiccioni GA, Balko EN (1992) Appl Catal B 1:285–296

    Article  CAS  Google Scholar 

  8. Mackenzie K, Frenzel H, Kopinke FD (2006) Appl Catal B 63:161–167

    Article  CAS  Google Scholar 

  9. Horold S, Vorlop KD, Tacke T, Sell M (1993) Catal Today 17:21–30

    Article  Google Scholar 

  10. Prusse U, Vorlop K-D (2001) J Mol Catal A: Chem 173:313–328

    Article  CAS  Google Scholar 

  11. Hurley KD, Shapley JR (2007) Environ Sci Technol 41:2044–2049

    Article  CAS  Google Scholar 

  12. Davie MG, Reinhard M, Shapley JR (2006) Environ Sci Technol 40:7329–7335

    Article  CAS  Google Scholar 

  13. Davie MG, Shih K, Pacheco FA, Leckie JO, Reinhard M (2008) Environ Sci Technol 42:3040–3046

    Article  CAS  Google Scholar 

  14. Gavagnin R, Biasetto L, Pinna F, Strukul G (2002) Appl Catal B 38:91–99

    Article  CAS  Google Scholar 

  15. Chaplin BP, Shapley JR, Werth CJ (2007) Environ Sci Technol 41:5491–5497

    Article  CAS  Google Scholar 

  16. Chaplin BP, Shapley JR, Werth CJ (2009) Catal Lett 130:56–62

    Article  CAS  Google Scholar 

  17. Chaplin BP, Roundy E, Guy KA, Shapley JR, Werth CJ (2006) Environ Sci Technol 40:3075–3081

    Article  CAS  Google Scholar 

  18. Munakata N, Reinhard M (2007) Appl Catal B 75:1–10

    Article  CAS  Google Scholar 

  19. Rottander C, Andorf R, Plog C, Krutzsch B, Baerns M (1997) J Catal 169:400–403

    Article  Google Scholar 

  20. Davie MG, Cheng HF, Hopkins GD, Lebron CA, Reinhard M (2008) Environ Sci Technol 42:8908–8915

    Article  CAS  Google Scholar 

  21. van Middlesworth JM, Wood SA (1999) Geochim Cosmochim Acta 63:1751–1765

    Article  Google Scholar 

  22. Wood SA, Pan P, Zhang Y, Mucci A (1994) Miner Deposita 29:309–317

    Article  CAS  Google Scholar 

  23. Colombo C, Oates CJ, Monhemius AJ, Plant JA (2008) Geochem-Explor Environ Anal 8:91–101

    Article  CAS  Google Scholar 

  24. Boily JF, Seward TM, Charnock JM (2007) Geochim Cosmochim Acta 71:4834–4845

    Article  CAS  Google Scholar 

  25. Herrero E, Climent V, Feliu JM (2000) Electrochem Commun 2:636–640

    Article  CAS  Google Scholar 

  26. Yoshinaga Y, Akita T, Mikami I, Okuhara T (2002) J Catal 207:37–45

    Article  CAS  Google Scholar 

  27. Sa J, Montero J, Duncan E, Anderson JA (2007) Appl Catal B 73:98–105

    Article  CAS  Google Scholar 

  28. Angeles-Wedler D, Mackenzie K, Kopinke F-D (2009) Appl Catal B 90:613–617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Water CAMPWS, a Science and Technology Center program of the National Science Foundation under agreement number CTS-0120978. We also thank Dr. Naoko Munakata for her assistance in reactor setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Chaplin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplin, B.P., Shapley, J.R. & Werth, C.J. Oxidative Regeneration of Sulfide-fouled Catalysts for Water Treatment. Catal Lett 132, 174–181 (2009). https://doi.org/10.1007/s10562-009-0083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0083-z

Keywords

Navigation