Skip to main content
Log in

Mechanistic Study of Lean NO2 Reduction by Propane Over HZSM-5 in the Presence of Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

This study focuses on the mechanism of lean NO2 reduction by propane in the presence of water, over an acidic zeolite (HZSM-5). Fourier Transform Infrared spectroscopy measurements with NO2 and propane in excess oxygen show formation of surface bound NO+, isocyanate, unsaturated hydrocarbons and traces of amine species. Upon addition of water the isocyanate species disappear and amine species are formed. Hence, it seems likely that the isocyanate species are hydrolysed to amine species, which are possible reaction intermediates in the HC-SCR reaction over HZSM-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto H. Yahiro S. Shundo Y. Yu-u N. Mizuno (1990) Shokubai (Catalyst) 32 430 Occurrence Handle1:CAS:528:DyaK3MXmvVantw%3D%3D

    CAS  Google Scholar 

  2. W. Held, A. Koenig, T. Richter and L. Puppe, SEA Paper 900496 (1990).

  3. Y. Traa B. Burger J. Weitkamp (1999) Microporous Mesoporous Mater. 30 3 Occurrence Handle1:CAS:528:DyaK1MXkvVGqsr0%3D

    CAS  Google Scholar 

  4. V.I. Parvulescu P. Grange B. Delmon (1998) Catal. Today 46 233 Occurrence Handle1:CAS:528:DyaK1cXntlyntrk%3D

    CAS  Google Scholar 

  5. M. Shelef (1995) Chem. Rev. 95 209 Occurrence Handle10.1021/cr00033a008 Occurrence Handle1:CAS:528:DyaK2MXjtF2ruro%3D

    Article  CAS  Google Scholar 

  6. D.M. Zhao (2005) Catalysts for Aoutomotive Exhaust Cleaning – Aspects on TWC Deactivation and Lean NOx Reduction Chalmers Reproservice Göteborg

    Google Scholar 

  7. H.Y. Chen T. Voskoboinikov W.M.H. Sachtler (1999) J. Catal. 186 91 Occurrence Handle1:CAS:528:DyaK1MXls1eitL8%3D

    CAS  Google Scholar 

  8. H.Y. Chen T. Voskoboinikov W.M.H. Sachtler (1998) J. Catal. 180 171 Occurrence Handle1:CAS:528:DyaK1MXislCq

    CAS  Google Scholar 

  9. Q. Sun Z.X. Gao H.Y. Chen W.M.H. Sachtler (2001) J. Catal. 201 89 Occurrence Handle1:CAS:528:DC%2BD3MXksVWqtb8%3D

    CAS  Google Scholar 

  10. Q. Sun Z.X. Gao B. Wen W.M.H. Sachtler (2002) Catal. Lett. 78 1 Occurrence Handle10.1023/A:1014981206924 Occurrence Handle1:CAS:528:DC%2BD38XktVGnsLw%3D

    Article  CAS  Google Scholar 

  11. M.J. Li J. Henao Y. Yeom E. Weitz W.M.H. Sachtler (2004) Catal. Lett. 98 5 Occurrence Handle10.1007/s10562-004-6441-y Occurrence Handle1:CAS:528:DC%2BD2cXovFams7g%3D

    Article  CAS  Google Scholar 

  12. Y.H. Yeom B. Wen W.M.H. Sachtler E. Weitz (2004) J. Phys. Chem. B 108 5386 Occurrence Handle10.1021/jp037504e Occurrence Handle1:CAS:528:DC%2BD2cXislanu7k%3D

    Article  CAS  Google Scholar 

  13. A.A. Kheir J.F. Haw (1994) J. Am. Chem. Soc. 116 817 Occurrence Handle1:CAS:528:DyaK2cXns1yntQ%3D%3D

    CAS  Google Scholar 

  14. A.D. Cowan N.W. Cant B.S. Haynes P.F. Nelson (1998) J. Catal. 176 329 Occurrence Handle10.1006/jcat.1998.2057 Occurrence Handle1:CAS:528:DyaK1cXjvFejtLw%3D

    Article  CAS  Google Scholar 

  15. I.O.Y. Liu N.W. Cant B.S. Haynes P.F. Nelson (2001) J. Catal. 203 487 Occurrence Handle10.1006/jcat.2001.3343 Occurrence Handle1:CAS:528:DC%2BD3MXotF2it7g%3D

    Article  CAS  Google Scholar 

  16. H.H. Ingelsten D.M. Zhao A. Palmqvist M. Skoglundh (2005) J. Catal. 232 68 Occurrence Handle10.1016/j.jcat.2005.02.022 Occurrence Handle1:CAS:528:DC%2BD2MXjslOnsb0%3D

    Article  CAS  Google Scholar 

  17. A. Hinz M. Skoglundh E. Fridell A. Andersson (2001) J. Catal. 201 247 Occurrence Handle10.1006/jcat.2001.3248 Occurrence Handle1:CAS:528:DC%2BD3MXkvF2jsLg%3D

    Article  CAS  Google Scholar 

  18. H.H. Ingelsten Å. Hildesson E. Fridell M. Skoglundh (2004) J. Mol. Catal. A 209 199 Occurrence Handle1:CAS:528:DC%2BD3sXhtVWgsr7M

    CAS  Google Scholar 

  19. R. Szostak (1989) Molecular Sieves Van Nostrand Reinhold New York

    Google Scholar 

  20. M. Wallin C.-J. Karlsson A. Palmqvist M. Skoglundh (2004) Topics Catal. 30/31 107 Occurrence Handle10.1023/B:TOCA.0000029737.89510.22 Occurrence Handle1:CAS:528:DC%2BD2cXmtVegtbs%3D

    Article  CAS  Google Scholar 

  21. P.E. Fanning M.A. Vannice (2002) J. Catal. 207 166 Occurrence Handle10.1006/jcat.2002.3518 Occurrence Handle1:CAS:528:DC%2BD38Xislyntrc%3D

    Article  CAS  Google Scholar 

  22. K. Hadjiivanov J. Saussey J.L. Freysz J.C. Lavalley (1998) Catal. Lett. 52 103 Occurrence Handle10.1023/A:1019059117488 Occurrence Handle1:CAS:528:DyaK1cXktV2gtr0%3D

    Article  CAS  Google Scholar 

  23. K.I. Hadjiivanov (2000) Catal. Rev. -Sci. Eng. 42 71 Occurrence Handle1:CAS:528:DC%2BD3cXjsFyqtL8%3D

    CAS  Google Scholar 

  24. S.A. Beloshapkin E.A. Paukshtis V.A. Sadykov (2000) J. Mol. Catal. A 158 355 Occurrence Handle1:CAS:528:DC%2BD3cXkvFyksrY%3D

    CAS  Google Scholar 

  25. A. Obuchi C. Wogerbauer R. Koppel A. Baiker (1998) Appl. Catal. B 19 9 Occurrence Handle1:CAS:528:DyaK1cXntVyjt78%3D

    CAS  Google Scholar 

  26. H.Y. Chen T. Voskoboinikov W.M.H. Sachtler (1999) Catal. Today 54 483 Occurrence Handle10.1016/S0920-5861(99)00211-4 Occurrence Handle1:CAS:528:DyaK1MXnvVWhsro%3D

    Article  CAS  Google Scholar 

  27. F. Poignant J.L. Freysz M. Daturi J. Saussey (2001) Catal. Today 70 197 Occurrence Handle10.1016/S0920-5861(01)00418-7 Occurrence Handle1:CAS:528:DC%2BD3MXptleksb8%3D

    Article  CAS  Google Scholar 

  28. M. Yamaguchi (1997) J. Chem. Soc. -Faraday Trans. 93 3581 Occurrence Handle1:CAS:528:DyaK2sXmslClsrs%3D Occurrence Handle10.1039/a700059f

    Article  CAS  Google Scholar 

  29. F. Solymosi T. Bansagi (1995) J. Catal. 156 75 Occurrence Handle10.1006/jcat.1995.1233 Occurrence Handle1:CAS:528:DyaK2MXot1Gqurg%3D

    Article  CAS  Google Scholar 

  30. S.K. Park H. Choo L. Kevan (2001) Phys. Chem. Chem. Phys. 3 3247 Occurrence Handle10.1039/b008117p Occurrence Handle1:CAS:528:DC%2BD3MXlt1ynsbs%3D

    Article  CAS  Google Scholar 

  31. M. Xin I.C. Hwang S.I. Woo (1997) J. Phys. Chem. B 101 9005 Occurrence Handle10.1021/jp9709520 Occurrence Handle1:CAS:528:DyaK2sXmsFWisL8%3D

    Article  CAS  Google Scholar 

  32. T. Shimanouchi (1972) Tables of Molecular Vibrational Frequences Consolidated NumberInSeriesVol. 1 National Bureau of Standards Washington 1–160

    Google Scholar 

  33. E. Jobson A. Balker A. Wokaun (1990) J. Chem. Soc. Faraday Trans. 86 1131 Occurrence Handle10.1039/ft9908601131 Occurrence Handle1:CAS:528:DyaK3cXisVSqsbs%3D

    Article  CAS  Google Scholar 

  34. N.Y. Topsoe H. Topsoe J.A. Dumesic (1995) J. Catal. 151 226 Occurrence Handle1:CAS:528:DyaK2MXivVWmsL0%3D

    CAS  Google Scholar 

  35. F. Poignant J. Saussey J.C. Lavalley G. Mabilon (1996) Catal. Today 29 93 Occurrence Handle10.1016/0920-5861(95)00285-5 Occurrence Handle1:CAS:528:DyaK28XjtlSlsb8%3D

    Article  CAS  Google Scholar 

  36. S.K. Park Y.K. Park S.E. Park L. Kevan (2000) Phys. Chem. Chem. Phys. 2 5500 Occurrence Handle10.1039/b003648j Occurrence Handle1:CAS:528:DC%2BD3cXot1Kktr8%3D

    Article  CAS  Google Scholar 

  37. J. Szanyi M.T. Paffett (1996) J. Catal. 164 232 Occurrence Handle10.1006/jcat.1996.0378 Occurrence Handle1:CAS:528:DyaK28XntVGisL8%3D

    Article  CAS  Google Scholar 

  38. M. Trombetta G. Busca S. Rossini V. Piccoli U. Cornaro A. Guercio R. Catani R.J. Willey (1998) J. Catal. 179 581 Occurrence Handle10.1006/jcat.1998.2251 Occurrence Handle1:CAS:528:DyaK1cXnsV2is7g%3D

    Article  CAS  Google Scholar 

  39. G. Boskovic T. Vulic E. Kis P. Putanov (2001) Chem. Eng. Technol. 24 269 Occurrence Handle10.1002/1521-4125(200103)24:3<269::AID-CEAT269>3.0.CO;2-P Occurrence Handle1:CAS:528:DC%2BD3MXit1artL8%3D

    Article  CAS  Google Scholar 

  40. B.I. Mosqueda-Jimenez A. Jentys K. Seshan J.A. Lercher (2003) Appl. Catal. B 43 105 Occurrence Handle1:CAS:528:DC%2BD3sXjvV2ksLk%3D

    CAS  Google Scholar 

  41. F.C. Jentoft B.C. Gates (1997) Topics Catal. 4 1 Occurrence Handle10.1023/A:1019184004885 Occurrence Handle1:CAS:528:DyaK2sXitF2qsLw%3D

    Article  CAS  Google Scholar 

  42. P. Svedberg E. Jobson S. Erkfeldt B. Andersson M. Larsson M. Skoglundh (2004) Topics Catal. 30–31 199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Härelind Ingelsten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingelsten, H.H., Skoglundh, M. Mechanistic Study of Lean NO2 Reduction by Propane Over HZSM-5 in the Presence of Water. Catal Lett 106, 15–19 (2006). https://doi.org/10.1007/s10562-005-9184-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-9184-5

Keywords

Navigation