Skip to main content

Advertisement

Log in

Transport viable heart tissue at physiological temperature yielded higher human cardiomyocytes compared to the conventional temperature

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

This study investigated the optimum transport condition for heart tissue to recover single-cell cardiomyocytes for future in-vitro or in-vivo studies. The heart tissues were obtained from removing excessive myocardium discharged during the repair surgery of an excessive right atrial hypertrophy due to a congenital disease. The transportation temperature studied was the most used temperature (4 °C) or the conventional condition, compared to a physiological temperature(37 °C). The heart tissues were transported from the operating theatre to the lab maintained less than 30 min consistently. Single-cell isolation was enzymatically and mechanically performed using collagenase-V (160 U/mg) and proteinase-XXIV (7-14 U/mg) following the previously described protocol. The impact of temperature differences was observed by the density of cells harvested per mg tissue, cell viability, and the senescence signals, identified by the p21, p53 and caspase-9 mRNA expressions. Results the heart tissue transported at 37 °C yielded significantly higher viable cell density (p < 0.01) yielded viable cells significantly higher density (p < 0.01) than the 4 °C; 2,335 ± 849 cells per mg tissue, and 732 ± 425 cells per mg tissue, respectively. The percentage of viable cells in both groups showed no difference. Although the 37 °C group expressed the apoptosis genes such as p21, p53 and caspase9 by 2.5-, 5.41-, 5-fold respectively (p > 0.05). Nonetheless, the Nk×2.5 and MHC genes were expressed 1,7- and 3.56-fold higher than the 4 °C. and the c-Kit+ expression was 17.56-fold, however, statistically insignificant. Conclusion When needed for single-cell isolation, a heart tissue transported at 37 °C yielded higher cell density per mg tissue compared to at 4 °C, while other indicators of gene expressions for apoptosis, cardiac structural proteins, cardiac progenitor cells showed no difference. Further investigations of the isolated cells at different temperature conditions towards their proliferation and differentiation capacities in a 3-D scaffold would be essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to the confidentiality of patients’ data but are available from the corresponding author on reasonable request.

References

  • Accornero F, Van Berlo JH, Benard MJ, Lorenz JN, Carmeliet P, Molkentin JD (2011) Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circul Res 109:272–280

    Article  CAS  Google Scholar 

  • Amado LC et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci 102:11474–11479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bangalore S et al (2020) ST-segment elevation in patients with Covid-19—a case series. New England J Med

  • Belzer FO, Southard JH (1988) Principles of solid-organ preservation by cold storage. Transplantation 45:673–676

    Article  PubMed  CAS  Google Scholar 

  • Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American. Heart Assoc Circu 135:e146–e603

    Google Scholar 

  • Careaga G, Salazar D, Téllez S, Sánchez O, Borrayo G, Argüero R (2001) Clinical impact of histidine-ketoglutarate-tryptophan (HTK) cardioplegic solution on the perioperative period in open heart surgery patients. Arch Med Res 32:296–299. https://doi.org/10.1016/S0188-4409(01)00296-X

    Article  PubMed  CAS  Google Scholar 

  • Chien KR, Knowlton KU, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3064

    Article  PubMed  CAS  Google Scholar 

  • Chong JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cino M, Del Maestro RF (1989) Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 269:623–638

    Article  PubMed  CAS  Google Scholar 

  • Cummings JF, Grood ES, Levy MS, Korvick DL, Wyatt R, Noyes FR (2002) The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J Orthop Res 20:338–345. https://doi.org/10.1016/s0736-0266(01)00119-x

    Article  PubMed  CAS  Google Scholar 

  • Donnelly AJ, Djuric M (1991) Cardioplegia solutions American. J Health-Syst Pharm 48:2444–2460

    Article  CAS  Google Scholar 

  • Dorn II GW, Brown JH (1999) Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovascular Med 9:26–34

    Article  CAS  Google Scholar 

  • Dunlay SM, Shah ND, Shi Q, Morlan B, VanHouten H, Hall Long K, Roger VL (2011) Lifetime costs of medical care after heart failure diagnosis. Circ Cardiovasc Quality Outcomes 4:68–75

    Article  Google Scholar 

  • Fernandez E, Siddiquee Z, Shohet RV (2001) Apoptosis and proliferation in the neonatal murine heart. Develop Dyn Official Publ Am Assoc Anatom 221:302–310

    CAS  Google Scholar 

  • Finegold JA, Asaria P, Francis DP (2013) Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations International journal of cardiology 168:934–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleischmann BK, Jovinge S (2013) FACS-Based Isolation, Propagation and Characterisation of Mouse Embryonic Cardiomyocytes Based on VCAM-1 Surface Marker Expression

  • Gregory CD, Milner AE (1994) Regulation of cell survival in burkitt lymphoma: implications from studies of apoptosis following cold-shock treatment. Int J Cancer 57:419–426

    Article  PubMed  CAS  Google Scholar 

  • Hasan H (2018) Induction of atrial endothelial senescence by angiotensin II and thrombin: role of oxidative stress and characterisation of pro-thrombotic, pro-adhesive, proteolytic and pro-fibrotic phenotype

  • Hochachka P (1986) Defense strategies against hypoxia and hypothermia Science 231:234-241

  • Indonesia KKR (2013a) Riset kesehatan dasar 2013 Jakarta. Kementerian Kesehatan Republik Indonesia 209

  • Indonesia MoHRo (2013b) Riset Kesehatan Dasar 2013

  • Irawan C et al (2016) Hemostatic Status of Pre and Post Intracoronary Injection of Peripheral Blood Stem Cells in Patients with Recent Myocardial Infarction Acta Medica Indonesiana 46

  • Iyengar J, George A, Russell JC, Das DK (1990) Generation of free radicals during cold injury and rewarming. Vascular Surgery 24:467–474

    Article  Google Scholar 

  • Jynge P, Hearse D, Feuvray D, Mahalu W, Canković-Darracott S, O’Brien K, Braimbridge M (1981) The St. Thomas’ hospital cardioplegic solution: a characterisation in two species. Scand J Thoracic Cardiovascu Surg Suppl 30:1–28

    CAS  Google Scholar 

  • Kajstura J et al (1995) Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Experiment Cell Res 219:110–121

    Article  CAS  Google Scholar 

  • Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circul Res 86:1107–1113

    Article  CAS  Google Scholar 

  • Knäuper V, López-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterisation of human collagenase-3. J Biol Chem 271:1544–1550

    Article  PubMed  Google Scholar 

  • Kruuv J, Glofcheski D, Cheng KH, Campbell S, Al-Qysi H, Nolan W, Lepock J (1983) Factors influencing survival and growth of mammalian cells exposed to hypothermia. I. Effects of temperature and membrane lipid perturbers. J Cell Physiol 115:179–185

    Article  PubMed  CAS  Google Scholar 

  • Laios E, Rebeyka IM, Prody CA (1997) Characterisation of cold-induced heat shock protein expression in neonatal rat cardiomyocytes. Molecular Cellular Biochem 173:153–159

    Article  CAS  Google Scholar 

  • Leslie P, Gartner P (2018) 2018. In: Color atlas and text of histology. Muscles, 7th edn. Wolters Kluwer, Phyladelphia, p 454

  • Liu A, Bian H, Huang LE, Lee YK (1994) Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. J Biol Chem 269:14768–14775

    Article  PubMed  CAS  Google Scholar 

  • Matijasevic Z, Snyder JE, Ludlum DB (1998) Hypothermia causes a reversible, p53-mediated cell cycle arrest in cultured fibroblasts. Oncol Res Featur Preclin Clin Cancer Ther 10:605–610

    CAS  Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury New England. J Med 312:159–163

    CAS  Google Scholar 

  • Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A (2016) Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol 67:2018–2028. https://doi.org/10.1016/j.jacc.2016.02.047

    Article  PubMed  CAS  Google Scholar 

  • Minasian S, Galagudza M, Dmitriev Y, Kurapeev D, Vlasov T (2013) Myocardial protection against global ischemia with Krebs-Henseleit buffer-based cardioplegic solution. J Cardiothorac Surg 8:60. https://doi.org/10.1186/1749-8090-8-60

    Article  PubMed  PubMed Central  Google Scholar 

  • Miwa I, Tamura H, Takasaki A, Yamagata Y, Shimamura K, Sugino N (2009) Pathophysiologic features of “thin”. endometrium. Fertility and Sterility 91:998–1004. https://doi.org/10.1016/j.fertnstert.2008.01.029

  • Narula J et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci 96:8144–8149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thrombosis Vascu Biol 23:953–964

    Article  CAS  Google Scholar 

  • Nursalim A, Katili PA, Santoso T (2016) Cellular cardiomyoplasty for myocardial infarction: A 2014 evidence-based update Acta Medica Indonesiana 46

  • Ohnishi T, Wang X, Ohnishi K, Takahashi A (1998) p53-dependent induction of WAF1 by cold shock in human glioblastoma cells. Oncogene 16:1507

    Article  PubMed  CAS  Google Scholar 

  • Olivetti G et al (1997) Apoptosis in the failing human heart New England. J Med 336:1131–1141

    CAS  Google Scholar 

  • Rauen U, Elling B, De Groot H (1997) Injury to cultured liver endothelial cells after cold preservation: mediation by reactive oxygen species that are released independently of the known trigger hypoxia/reoxygenation. Free Radic Biol Med 23:392–400. https://doi.org/10.1016/S0891-5849(96)00618-1

    Article  PubMed  CAS  Google Scholar 

  • Rauen U, de Groot H (1998) Cold-induced release of reactive oxygen species as a decisive mediator of hypothermia injury to cultured liver cells. Free Radic Biol Med 24:1316–1323

  • Rule G, Frim J, Thompson J, Lepock J, Kruuv J (1978) The effect of membrane lipid perturbers on survival of mammalian cells to cold. Cryobiology 15:408–414

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Lu D, Iyengar J, Das D (1993) Reperfusion injury during frostbite and non-freezing cold exposure. Pathophysiol Reperfus Injury:471–490

  • Sato H, Shiraishi I, Takamatsu T, Hamaoka K (2007) Detection of TUNEL-positive cardiomyocytes and C-kit-positive progenitor cells in children with congenital heart disease. J Mol Cell Cardiol 43:254–261. https://doi.org/10.1016/j.yjmcc.2007.05.011

    Article  PubMed  CAS  Google Scholar 

  • Scalise M et al (2015) C-kit+CSC-derived cardiomyocytes exhibit the typical transcriptional gene blueprint of adult cardiomyocytes. Vascu Pharmacol 75:69 https://doi.org/10.1016/j.vph.2015.11.071

    Article  Google Scholar 

  • Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol Heart Circ Physiol 275:H2308–H2318

    Article  CAS  Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Article  PubMed  CAS  Google Scholar 

  • Stefanovich P, Ezzell R, Sheehan S, Tompkins R, Yarmush M, Toner M (1995) Effects of hypothermia on the function, membrane integrity, and cytoskeletal structure of hepatocytes. Cryobiology 32:389–403

    Article  PubMed  CAS  Google Scholar 

  • Tri R (2019) Bayar Klaim Penyakit Jantung, BPJS Kesehatan Gelontorkan Rp 9,3 T. Tempo, Jakarta

  • Vunjak-Novakovic G (2017) Tissue engineering of the heart: An evolving paradigm. J Thorac Cardiovasc Surg 153:593–595. doi:https://doi.org/10.1016/j.jtcvs.2016.08.057

    Article  PubMed  CAS  Google Scholar 

  • Wahl LM, Wahl SM, Mergenhagen SE, Martin GR (1974) Collagenase production by endotoxin-activated macrophages. Proc Natl Acad Sci 71:3598–3601

  • Ye L et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15:750-761

Download references

Funding

This study was supported by Grant No. NKB-581/UN2.RST/HKP.05.00/2020 from the University of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normalina Sandora.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All methods in this study have been reviewed and approved by the Ethical Committee of Universitas Indonesia with Ethical Approval no. KET.483/UN2.F1/ETIK/PPM.00.02/2019.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putra, M.A., Sandora, N., Suwarti et al. Transport viable heart tissue at physiological temperature yielded higher human cardiomyocytes compared to the conventional temperature. Cell Tissue Bank 23, 717–727 (2022). https://doi.org/10.1007/s10561-021-09978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-021-09978-w

Keywords

Navigation