Skip to main content

Advertisement

Log in

Stem cell regenerative potential for plastic and reconstructive surgery

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Stem cells represent heterogeneous population of undifferentiated cells with unique characteristics of long term self renewal and plasticity. Moreover, they are capable of active migration to diseased tissues, secretion of different bioactive molecules, and they have immunosuppressive potential as well. They occur in all tissues through life and are involved in process of embryogenesis and regeneration. During last decades stem cells attracted significant attention in each field of medicine, including plastic and reconstructive surgery. The main goal of the present review article is to present and discuss the potential of stem cells and to provide information about their safe utilization in chronic wounds and fistulae healing, scar management, breast reconstruction, as well as in bone, tendon and peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agacayak S, Gulsun B, Ucan MC, Karaoz E, Nergiz Y (2012) Effects of mesenchymal stem cells in critical size bone defect. Eur Rev Med Pharmacol Sci 16:679–686

    CAS  PubMed  Google Scholar 

  • All AH, Gharibani P, Gupta S, Bazley FA, Pashai N, Chou BK et al (2015) Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS ONE 10:e0116933

    Article  PubMed  PubMed Central  Google Scholar 

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    CAS  PubMed  Google Scholar 

  • Aust MC, Reimers K, Kaplan HM, Stahl F, Repenning C, Scheper T et al (2011) Percutaneous collagen induction-regeneration in place of cicatrisation? J Plast Reconstr Aesthet Surg 64:97–107

    Article  CAS  PubMed  Google Scholar 

  • Bilousova G, du Jun H, King KB, De Langhe S, Chick WS, Torchia EC et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19(5):475–479

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR (2015) Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc 90:747–755

    Article  PubMed  Google Scholar 

  • Claro F Jr, Figueiredo JC, Zampar AG, Pinto-Neto AM (2012) Applicability and safety of autologous fat for reconstruction of the breast. Br J Surg 99:768–780

    Article  PubMed  Google Scholar 

  • Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120S

    Article  CAS  PubMed  Google Scholar 

  • Czaplewski SK, Tsai TL, Duenwald-Kuehl SE, Vanderby R Jr, Li WJ (2014) Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials 35:6907e17

    Article  Google Scholar 

  • Daher RJ, Chahine NO, Razzano P, Patwa SA, Sgaglione NJ, Grande DA (2011) Tendon repair augmented with a novel circulating stem cell population. Int J Clin Exp Med 4:214–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danisovic L, Varga I, Polak S, Bajcikova B, Adamkov M, Vojtassak J (2014) Biological and morphological characterization of in vitro expanded human muscle-derived stem cells. Tsitologiya 53:482–487

    Google Scholar 

  • de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A (2013) Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis 28:313–323

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G et al (2011) Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 226:150–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC (2015) Stem cells in wound healing: The future of regenerative medicine? A mini-review. Gerontology 62(2):216–225

    Article  PubMed  Google Scholar 

  • Fabbrocini G, De Vita V, Monfrecola A, De Padova MP, Brazzini B, Teixeira F, Chu A (2014) Percutaneous collagen induction: an effective and safe treatment for post-acne scarring in different skin phototypes. J Dermatolog Treat 25:147–152

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B et al (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M et al (2014) Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg 25:267–272

    Article  PubMed  Google Scholar 

  • Giannotti S, Trombi L, Bottai V, Ghilardi M, D’Alessandro D, Danti S et al (2013) Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS ONE 8:e73893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept -open questions. Injury 39:S5–S8

    Article  PubMed  Google Scholar 

  • Gottrup F, Apelqvist J, Price P (2010) Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 19:237–268

    Article  CAS  PubMed  Google Scholar 

  • Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898

    Article  PubMed  PubMed Central  Google Scholar 

  • Han SK, Kim HR, Kim WK (2010) The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study. Wound Repair Regen 18:342–348

    Article  PubMed  Google Scholar 

  • Heslop JA, Hammond TG, Santeramo I, Tort Piella A, Hopp I, Zhou J et al (2015) Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 4:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD (2012) Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med 18:292–297

    Article  CAS  PubMed  Google Scholar 

  • Houschyar KS, Momeni A, Pyles MN, Cha JY, Maan ZN, Duscher D et al (2016) The role of current techniques and concepts in peripheral nerve repair. Plast Surg Int 2016:4175293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Illich DJ, Demir N, Stojković M, Scheer M, Rothamel D, Neugebauer J et al (2011) Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 29:555–563

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Tong X, Huang X, Zhang J, Qin H, Hu Q (2016) Patient-derived human induced pluripotent stem cells from gingival fibroblasts composited with defined nanohydroxyapatite/chitosan/gelatin porous scaffolds as potential bone graft substitutes. Stem Cells Transl Med 5:95–105

    Article  PubMed  Google Scholar 

  • Jin GZ, Kim TH, Kim JH, Won JE, Yoo SY, Choi SJ et al (2013) Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. J Biomed Mater Res A 101:1283–1291

    Article  PubMed  Google Scholar 

  • Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E et al (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22(5):767–777

    Article  PubMed  PubMed Central  Google Scholar 

  • Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114:935–939

    Article  PubMed  Google Scholar 

  • Khazaei M, Siddiqui AM, Fehlings MG (2015) The potential for iPS-derived stem cells as a therapeutic strategy for spinal cord injury: opportunities and challenges. J Clin Med. 4:37–65

    Article  Google Scholar 

  • Kim WS, Park BS, Sung JH (2009) The wound healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9:879–887

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Jung M, Kim HS, Kim YM, Choi EH (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20:383–387

    Article  CAS  PubMed  Google Scholar 

  • King A, Balaji S, Keswani SG, Crombleholme TM (2014) The role of stem cells in wound angiogenesis. Adv Wound Care (New Rochelle) 3:614–625

    Article  Google Scholar 

  • Kocsis JD, Honmou O (2012) Bone marrow stem cells in experimental stroke. Prog Brain Res 201:79–98

    Article  PubMed  Google Scholar 

  • Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z (2013) Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 13:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohsiriwat V, Curigliano G, Rietjens M, Goldhirsch A, Petit JY (2011) Autologous fat transplantation in patients with breast cancer: “silencing” or “fueling” cancer recurrence? Breast 20:351–357

    Article  PubMed  Google Scholar 

  • Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D et al (2014) Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Y, Nan P, Chen G, Sha Y, Xia B, Yang L (2015) In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells derived neural crest stem cells. Biotechnol Lett 37:2497–2506

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Pelletier MH, Yu Y, Walsh WR (2013) Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 133:153–165

    Article  PubMed  Google Scholar 

  • Masuda T, Furue M, Matsuda T (2004) Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng 10:1672–1683

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T et al (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382

    Article  CAS  PubMed  Google Scholar 

  • Matthes SM, Reimers K, Janssen I, Liebsch C, Kocsis JD, Vogt PM, Radtke C (2013) Intravenous transplantation of mesenchymal stromal cells to enhance peripheral nerve regeneration. Biomed Res Int 2013:573169

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38:201–209

    Article  PubMed  Google Scholar 

  • Mestak O, Hromadkova V, Fajfrova M, Molitor M, Mestak J (2016) Evaluation of oncological safety of fat grafting after breast-conserving therapy: a prospective study. Ann Surg Oncol 23:776–781

    Article  PubMed  Google Scholar 

  • Mizushima T, Takahashi H, Takeyama H, Naito A, Haraguchi N, Uemura M, Nishimura J, Hata T, Takemasa I, Yamamoto H, Doki Y (2016) A clinical trial of autologous adipose-derived regenerative cell transplantation for a postoperative enterocutaneous fistula. Surg Today 46(7):835–842

  • Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118:121S–128S

    Article  CAS  PubMed  Google Scholar 

  • Nutt SE, Chang EA, Suhr ST, Schlosser LO, Mondello SE, Moritz CT et al (2013) Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 248:491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16:25476–25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallua N, Baroncini A, Alharbi Z, Stromps JP (2014) Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 67:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B et al (2012) Defining the nature of human pluripotent stem cell progeny. Cell Res 22:178–193

    Article  CAS  PubMed  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  CAS  PubMed  Google Scholar 

  • Qin YX, Hu M (2014) Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. Biomed Res Int 2014:863421

    PubMed  PubMed Central  Google Scholar 

  • Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422

    Article  CAS  PubMed  Google Scholar 

  • Romito A, Cobellis G (2016) Pluripotent stem cells Current understanding and future directions. Stem Cells Int 2016:9451492

  • Sándor GK (2012) Tissue engineering of bone: clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg 2:8–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P et al (2014) Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6:264ra163

    Article  PubMed  PubMed Central  Google Scholar 

  • Selek O, Buluç L, Muezzinoğlu B, Ergün RE, Ayhan S, Karaöz E (2014) Mesenchymal stem cell application improves tendon healing via anti-apoptotic effect (Animal study). Acta Orthop Traumatol Turc 48(2):187–195

    Article  PubMed  Google Scholar 

  • Teng S, Liu C, Krettek C, Jagodzinski M (2014) The application of induced pluripotent stem cells for bone regeneration: current progress and prospects. Tissue Eng Part B Rev 20(4):328–339

    Article  CAS  PubMed  Google Scholar 

  • Thien TB, Becker JH, Theis JC (2004) Rehabilitation after surgery for flexor tendon injuries in the hand. Cochrane Database Syst Rev 4:CD003979

    Google Scholar 

  • Tissiani LA, Alonso N (2016) A prospective and controlled clinical trial on stromal vascular fraction enriched fat grafts in secondary breast reconstruction. Stem Cells Int 2016:2636454

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, Nakamura H (2012) Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun 419:130–135

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Ikeda M, Takamatsu K, Yokoi T, Okada M, Nakamura H (2014) Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice. Cells Tissues Organs 200:78–91

    Article  CAS  PubMed  Google Scholar 

  • Ulicna M, Danisovic L, Vojtassak J (2010) Does cell therapy and tissue engineering represent a promising treatment of diabetic foot ulcers? Bratisl Lek Listy 111:138–143

    CAS  PubMed  Google Scholar 

  • Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B et al (2014) Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 6:264ra164

    Article  PubMed  Google Scholar 

  • Wu Y, Chen L, Scott P, Tredget E (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. Int J Oncol 41:959–968

    CAS  PubMed  Google Scholar 

  • Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z et al (2013) Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A 19:2439–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Ueda M, Naiki T, Nagasaka T (2004) Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res 15:589–597

    Article  PubMed  Google Scholar 

  • Yang R, Zheng Y, Burrows M, Liu S, Wei Z, Nace A et al (2014) Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat Commun 5:3071

    PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55

    Article  PubMed  Google Scholar 

  • Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q et al (2015a) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T et al (2015b) Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials 53:716–730

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Received from Ministry of Health of the Slovak republic (Registration number: 2012/4-UKBA-4) and Slovak Research and Development Agency (Registration number: APVV-14-0032).

Author’s contribution

MB designed, organized, and prepared the manuscript from the initial draft to final version. MC participated in manuscript preparation. IK participated in manuscript preparation. RZ was involved in manuscript design, organization and preparation. JF participated in manuscript preparation. JK participated in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Boháč.

Ethics declarations

Conflict of interest

All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boháč, M., Csöbönyeiová, M., Kupcová, I. et al. Stem cell regenerative potential for plastic and reconstructive surgery. Cell Tissue Bank 17, 735–744 (2016). https://doi.org/10.1007/s10561-016-9583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9583-4

Keywords

Navigation