Skip to main content
Log in

BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Demineralization of allograft bone increases the bioavailability of matrix-associated bone morphogenetic proteins (BMPs), rendering these grafts osteoinductive. While osteoinductivity is related to BMP content, little is known about how the demineralization protocol, in particular, extended demineralization times, affects graft BMP levels. We characterized the BMP-7 content of <710 μm bovine bone powder demineralized under various conditions. Using 1 g of bone per 50 ml of 0.125 N, 0.25 N, or 0.5 N HCl, demineralization was performed at room temperature for 5 min to 24 h. Minimum residual calcium levels were obtained within 90 min and were <1 wt % using the 0.25 N and 0.5 N baths and 17 wt % using the 0.125 N bath. Measured peak BMP-7 levels were also obtained within 90 min and were 161–165 ng g−1 using the 0.25 N and 0.5 N baths and 55.2 ng g−1 using the 0.125 N bath. This compares to 5.1 ng g−1 for undemineralized bone. Further acid bath exposure to 24 h resulted in BMP-7 decline to about 50% of the peak value, which was significant. The BMP-7 half-life was estimated to be 26 h. It is likely that the decline was due to diffusion of BMP-7 from the bone matrix into the acid. These results suggest the importance of not over demineralizing bone grafts and should stimulate further research that can be incorporated into the processing methodology followed by tissue banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adkisson HD, Strauss-Schoenberger J, Gillis M, Wilkins R, Jackson M, Hruska KA (2000) Rapid quantitative bioassay of osteoinduction. J Orthop Res 18:503–511. doi:10.1002/jor.1100180326

    Article  PubMed  CAS  Google Scholar 

  • Bauer TW, Muschler GF (2000) Bone graft materials. An overview of basic science. Clin Orthop Rel Res 371:10–27

    Article  Google Scholar 

  • Blum B, Moseley J, Miller L, Richelsoph K, Haggard W (2004) Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics 27(1 Suppl):S161–S165

    PubMed  Google Scholar 

  • Chao MT, Jiang S, Smith D, DeCesare GE, Cooper GM, Pollack IF, Girotto J, Losee JE (2009) Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria. Plast Reconstr Surg 123:976–982. doi:10.1097/PRS.0b013e31819ba46f

    Article  PubMed  CAS  Google Scholar 

  • Etienne G, Ragland PS, Mont MA (2004) Use of cancellous bone chips and demineralized bone matrix in the treatment of acetabular osteolysis: preliminary 2-year follow-up. Orthopedics 27(1 Suppl):s123–s126

    PubMed  Google Scholar 

  • Gardner MJ, Toro-Arbelaez JB, Harrison M, Hierholzer C, Lorich DG, Helfet DL (2008) Open reduction and internal fixation of distal femoral nonunions: long-term functional outcomes following a treatment protocol. J Trauma 64:434–438. doi:10.1097/01.ta.0000245974.46709.2e

    Article  PubMed  Google Scholar 

  • Gendler E (1986) Perforated demineralized bone matrix: a new form of osteoinductive material. J Biomed Mater Res 20:687–697. doi:10.1002/jbm.820200603

    Article  PubMed  CAS  Google Scholar 

  • Han B, Yang Z, Nimni M (2008) Effect of gamma irradiation on osteoinduction associated with demineralized bone matrix. J Orthop Res 26:75–82. doi:10.1002/jor.20478

    Article  PubMed  CAS  Google Scholar 

  • Harakas NK (1984) Demineralized bone-matrix-induced osteogenesis. Clin Orthop Rel Res 188:239–250

    Google Scholar 

  • Honsawek S, Powers RM, Wolfinbarger L (2005) Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank 6:13–23. doi:10.1007/s10561-005-1445-4

    Article  PubMed  CAS  Google Scholar 

  • Jazayeri MA, Nichter LS, Zhou ZY, Wellisz T, Cheung DT (1994) Comparison of various delivery systems for demineralized bone matrix in a rat cranial defect model. J Craniofac Surg 5:172–178

    Article  PubMed  CAS  Google Scholar 

  • Ladd AL, Pliam NB (1999) Use of bone-graft substitutes in distal radius fractures. J Am Acad Orthop Surg 7:279–290

    PubMed  CAS  Google Scholar 

  • Landesman R, Reddi AH (1989) In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers. Calcif Tissue Int 45:348–353

    Article  PubMed  CAS  Google Scholar 

  • Manchio JV, Omulepu OO, Weinzweig J (2009) Treatment of benign bone tumors of the hand using demineralized bone matrix. Plast Reconstr Surg 123:214e–216e. doi:10.1097/PRS.0b013e3181a3f62f

    Article  PubMed  CAS  Google Scholar 

  • Marino AA, Becker RO (1968) Mechanically induced free radicals in bone. Nature 218:466–467

    Article  PubMed  CAS  Google Scholar 

  • Marks T, Wingerter S, Franklin L, Woodall J Jr, Tucci M, Russell G, Patel R, Benghuzzi H (2007) Histological and radiographic comparison of allograft substitutes using a continuous delivery model in segmental defects. Biomed Sci Instrum 43:194–199

    Google Scholar 

  • Mizutani H, Urist MR (1982) The nature of bone morphogenetic protein (BMP) fractions derived from bovine bone matrix gelatin. Clin Orthop Rel Res 171:213–223

    CAS  Google Scholar 

  • Murray SS, Brochmann EJ, Harker JO, King E, Lollis RJ, Khaliq SA (2007) A statistical model to allow the phasing out of the animal testing of demineralized bone matrix products. Altern Lab Anim 35:405–409

    PubMed  CAS  Google Scholar 

  • Neigel JM, Ruzicka PO (1996) Use of demineralized bone implants in orbital and craniofacial reconstruction and a review of the literature. Ophthal Plast Reconstr Surg 12:108–120

    Article  PubMed  CAS  Google Scholar 

  • Nilsson OS, Persson P-K, Ekelund A (1990) Heterotopic new bone formation causes resorption of the inductive bone matrix. Clin Orthop Rel Res 257:280–285

    Google Scholar 

  • Pacaccio DJ, Stern SF (2005) Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 22:599–606. doi:10.1016/j.cpm.2005.07.001

    Article  PubMed  Google Scholar 

  • Pietrzak WS (2006) The hydration characteristics of demineralized and nondemineralized allograft bone: scientific perspectives on graft function. J Craniofac Surg 17:120–130. doi:10.1097/01.scs.0000200413.68324.61

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Woodell-May J (2005) The composition of human cortical allograft bone derived from FDA/AATB-screened donors. J Craniofac Surg 16:579–585

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM (2005) Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg 44:345–353. doi:10.1053/j.jfas.2005.07.006

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Woodell-May J, McDonald N (2006) Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg 17:84–90. doi:10.1097/01.scs.0000179745.91165.73

    Article  PubMed  Google Scholar 

  • Reddi AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg 83A(Suppl 1):S1–S6

    Google Scholar 

  • Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Nat Acad Sci USA 69:1601–1605

    Article  PubMed  CAS  Google Scholar 

  • Sampath TK, Reddi AH (1984) Distribution of bone inductive proteins in mineralized and demineralized extracellular matrix. Biochem Biophys Res Commun 119:949–954

    Article  PubMed  CAS  Google Scholar 

  • Scarborough NL, White EM, Hughes JV, Manrique AJ, Poser JW (1995) Allograft safety: viral inactivation with bone demineralization. Contemp Orthop 31:257–261

    PubMed  CAS  Google Scholar 

  • Shigeyama Y, D’Errico JA, Stone R, Somerman MJ (1995) Commercially-prepared allograft material has biological activity in vitro. J Peridontol 66:478–487

    CAS  Google Scholar 

  • Sung AD, Anderson ME, Zurakowski D, Hornicek FJ, Gebhardt MC (2008) Unicameral bone cyst: a retrospective study of three surgical treatments. Clin Orthop Relat Res 466:2519–2526. doi:10.1007/s11999-008-0407-0

    Article  PubMed  Google Scholar 

  • Swenson CL, Arnoczky SP (2003) Demineralization for inactivation of infectious retrovirus in systematically infected cortical bone. In vitro and in vivo experimental studies. J Bone Joint Surg 85-A:323–332

    PubMed  Google Scholar 

  • Syftestad G, Urist MR (1979) Degradation of bone matrix morphogenetic activity by pulverization. Clin Orthop Rel Res 141:281–285

    Google Scholar 

  • Topuz K, Colak A, Kaya S, Simşek H, Kutlay M, Demircan MN, Velioğlu M (2009) Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J 18:238–243. doi:10.1007/s00586-008-0869-5

    Article  PubMed  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  • Urist MR (1972) Osteoinduction in undemineralized bone implants modified by chemical inhibitors of endogenous matrix enzymes. A preliminary report. Clin Orthop Rel Res 87:132–137

    CAS  Google Scholar 

  • Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(Suppl 6):1392–1406

    PubMed  CAS  Google Scholar 

  • Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Rel Res 53:243–283

    CAS  Google Scholar 

  • Urist MR, Dowell TA, Hay PH, Strates BS (1968) Inductive substrates for bone formation. Clin Orthop Rel Res 59:59–96

    CAS  Google Scholar 

  • Urist MR, Iwata H, Boyd SD, Ceccotti PL (1974) Observations implicating an extracellular enzyme mechanism of control of bone morphogenesis. J Histochem Cytochem 22:88–103

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Granstein R, Nogami H, Svenson L, Murphy R (1977) Transmembrane bone morphogenesis across multiple-walled diffusion chambers: new evidence for a diffusible bone morphogenetic property. Arch Surg 112:612–619

    PubMed  CAS  Google Scholar 

  • Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop Rel Res 367S:S95–S106

    Google Scholar 

  • Yazdi M, Bernick S, Paule WJ, Nimni ME (1991) Postmortem degradation of demineralized bone matrix osteoinductive potential. Effect of storage time and temperature. Clin Orthop Rel Res 262:281–285

    Google Scholar 

  • Zhang M, Powers RM Jr, Wolfinbarger L Jr (1997) Effects(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Peridontol 68:1085–1091

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Pietrzak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrzak, W.S., Ali, S.N., Chitturi, D. et al. BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tissue Bank 12, 81–88 (2011). https://doi.org/10.1007/s10561-009-9168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-009-9168-6

Keywords

Navigation