Skip to main content
Log in

Some Asymptotic Properties of the Solutions of Laplace Equations in a Unit Disk

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The authors consider the optimization problem related to the integral representation of the deviation of positive linear operators on the classes of (ψ, β)-differentiable functions in the integral metric. The Poisson integral, which is the solution of the Laplace equation in polar coordinates with the corresponding initial conditions given on the boundary of the unit disk, is taken as a positive linear operator. The Poisson integral is an operator with a delta-like kernel; therefore, it is the best apparatus for solving many problems of applied mathematics, namely: methods of optimization and variational calculus, mathematical control theory, theory of dynamical systems and game problems of dynamics, applied nonlinear analysis and moving objects search. The classes of (ψ, β)-differentiable functions on which the asymptotic properties of the solutions to Laplace equations in a unit disk are analyzed are generalizations of the Sobolev, Weyl–Nagy, etc. classes well-known in optimization problems. The problem solved in the article will make it possible to generate high-quality mathematical models of many natural and social processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Chikrii and G. Ts. Chikrii, “Matrix resolving functions in game problems of dynamics,” Proc. Steklov Inst. Math., Vol. 291, 56–65 (2015). https://doi.org/https://doi.org/10.1134/S0081543815090047.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Chikrii and I. I. Matichin, “Game problems for fractional-order linear systems,” Proc. Steklov Inst. Math., Vol. 268, 54–70 (2010).https://doi.org/10.1134/S0081543810050056.

  3. Yu. I. Kharkevych, “On some asymptotic properties of solutions to biharmonic equations,” Cybern. Syst. Analysis, Vol. 58, No. 2, 251–258 (2022). https://doi.org/https://doi.org/10.1007/s10559-022-00457-y.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Chikrii and P. V. Prokopovich, “Simple pursuit of one evader by a group,” Cybern. Syst. Analysis, Vol. 28, No. 3, 438–444 (1992). https://doi.org/https://doi.org/10.1007/BF01125424.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. I. Kharkevych, “Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity,” J. Autom. Inform. Sci., Vol. 51, Iss. 4, 43–54 (2019).https://doi.org/10.1615/JAutomatInfScien.v51.i4.40.

  6. T. V. Zhyhallo and Yu. I. Kharkevych, “Approximating properties of biharmonic Poisson operators in the classes \({\widehat{L}}_{\beta ,1}^{\psi },\) ” Ukr. Math. J., Vol. 69, No. 5, 757–765 (2017).https://doi.org/10.1007/s11253-017-1393-8.

  7. I. V. Kal’chuk, “Approximation of (ψ, β) -differentiable functions defined on the real axis by Weierstrass operators,” Ukr. Math. J., Vol. 59, No. 9, 1342–1363 (2007).https://doi.org/10.1007/s11253-007-0091-3.

  8. A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kyiv (1987).

    MATH  Google Scholar 

  9. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of conjugate differentiable functions by their Abel–Poisson integrals,” Ukr. Math. J., Vol. 61, No. 1, 86–98 (2009). https://doi.org/https://doi.org/10.1007/s11253-009-0196-y.

    Article  MathSciNet  Google Scholar 

  10. I. Kal’chuk and Yu. Kharkevych, “Approximation ðroperties of the generalized Abel–Poisson integrals on the Weyl–Nagy classes,” Axioms, Vol. 11, No. 4, 161 (2022).https://doi.org/10.3390/axioms11040161.

  11. Yu. I. Kharkevych and I. V. Kal’chuk, “Approximation of (ψ, β) -differentiable functions by Weierstrass integrals,” Ukr. Math. J., Vol. 59, No. 7, 1059–1087 (2007). https://doi.org/10.1007/s11253-007-0069-1.

  12. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the classes \({C}_{\beta ,\infty }^{\psi }\) (EQ) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 7, 1083–1107 (2011). https://doi.org/10.1007/s11253-011-0565-1.

  13. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β) -differentiable functions of low smoothness by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 12, 1820–1844 (2012). https://doi.org/https://doi.org/10.1007/s11253-012-0616-2.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  15. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of conjugate differentiable functions by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 61, No. 3, 399–413 (2009). https://doi.org/https://doi.org/10.1007/s11253-009-0217-x.

    Article  MathSciNet  Google Scholar 

  16. K. M. Zhigallo and Yu. I. Kharkevych, “On the approximation of functions of the Hölder class by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 52, No. 7, 1113–1117 (2000). https://doi.org/https://doi.org/10.1023/A:1005285818550.

    Article  Google Scholar 

  17. A. Chikrii and I. Matichin, “Riemann–Liouville, Caputo, and sequential fractional derivatives in differential games,” in: M. Breton and K. Szajowski (eds.), Advances in Dynamic Games, Annals of the Intern. Soc. of Dynamic Games, Vol. 11, Birkhäuser, Boston (2011), pp. 61–81. https://doi.org/10.1007/978-0-8176-8089-3_4.

  18. J. Zajac, M. E. Korenkov, and Yu. I. Kharkevych, “On the asymptotics of some Weierstrass functions,” Ukr. Math. J., Vol. 67, No. 1, 154–158 (2015). https://doi.org/https://doi.org/10.1007/s11253-015-1070-8.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Albus, A. Meystel, A. A. Chikrii, A. A. Belousov, and A. I. Kozlov, “Analytical method for solution of the game problem of soft landing for moving objects,” Cybern. Syst. Analysis, Vol. 37, No. 1, 75–91 (2001). https://doi.org/https://doi.org/10.1023/A:1016620201241.

    Article  MATH  Google Scholar 

  20. D. N. Bushev and Yu. I. Kharkevich, “Finding solution subspaces of the Laplace and heat equations isometric to spaces of real functions, and some of their applications,” Math. Notes, Vol. 103, No. 6, 869–880 (2018). https://doi.org/https://doi.org/10.1134/S0001434618050231.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. M. Zhyhallo and Yu. I. Kharkevych, “Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals,” Ukr. Math. J., Vol. 54, No. 1, 51–63 (2002). https://doi.org/https://doi.org/10.1023/A:1019789402502.

    Article  Google Scholar 

  22. T. V. Zhyhallo and Yu. I. Kharkevych, “Fourier transform of the summatory Abel–Poisson function,” Cybern. Syst. Analysis, Vol. 58, No. 6, 957–965 (2022). https://doi.org/https://doi.org/10.1007/s10559-023-00530-0.

    Article  MATH  Google Scholar 

  23. I. V. Kal’chuk and Yu. I. Kharkevych, “Approximation of the classes \({W}_{\beta ,\infty }^{r}\) by generalized Abel–Poisson integrals,” Ukr. Math. J., Vol. 74, No. 9, 575–585 (2022).https://doi.org/10.1007/s11253-022-02084-4.

  24. T. V. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the class \({C}_{\beta ,\infty }^{r}\) by Poisson integrals in the uniform metric,” Ukr. Math. J., Vol. 61, No. 12, 1893–1914 (2009). https://doi.org/10.1007/s11253-010-0321-y.

  25. T. V. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β) -differentiable functions by Poisson integrals in the uniform metric,” Ukr. Math. J., Vol. 61, No. 11, 1757–1779 (2009). https://doi.org/https://doi.org/10.1007/s11253-010-0311-0.

    Article  MathSciNet  Google Scholar 

  26. T. V. Zhyhallo and Yu. I. Kharkevych, “On approximation of functions from the class \({L}_{\beta ,1}^{\psi }\) by the Abel–Poisson integrals in the integral metric,” Carpathian Math. Publ., Vol. 14, No. 1, 223–229 (2022).https://doi.org/10.15330/cmp.14.1.223-229.

  27. F. G. Abdullayev and Yu. I. Kharkevych, “Approximation of the classes \({C}_{\beta }^{\psi }{H}^{\alpha }\) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 72, No. 1, 21–38 (2020). https://doi.org/10.1007/s11253-020-01761-6.

  28. D. M. Bushev and Yu. I. Kharkevych, “Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function,” Ukr. Math. J., Vol. 67, No. 11, 1643–1661 (2016). https://doi.org/https://doi.org/10.1007/s11253-016-1180-y.

    Article  MathSciNet  MATH  Google Scholar 

  29. U. Z. Hrabova, I. V. Kal’chuk, and L. I. Filozof, “Approximative properties of the three-harmonic Poisson integrals on the classes \({W}_{\beta }^{r}{H}^{\alpha }\) ,” J. Math. Sci. (N.Y.), Vol. 254, No. 3, 397–405 (2021).https://doi.org/10.1007/s10958-021-05311-8.

  30. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of differentiable periodic functions by their biharmonic Poisson integrals,” Ukr. Math. J., Vol. 54, No. 9, 1462–1470 (2002). https://doi.org/https://doi.org/10.1023/A:1023463801914.

    Article  MATH  Google Scholar 

  31. I. V. Kal’chuk and Yu. I. Kharkevych, “Approximating properties of biharmonic Poisson integrals in the classes \({W}_{\beta }^{r}{H}^{\alpha }\) ,” Ukr. Math. J., Vol. 68, No. 11, 1727–1740 (2017).https://doi.org/10.1007/s11253-017-1323-9.

  32. Yu. I. Kharkevych and I. V. Kal’chuk, “Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals,” Ukr. Math. J., Vol. 59, No. 8, 1224–1237 (2007).https://doi.org/10.1007/s11253-007-0082-4.

  33. Yu. Kharkevych, “Approximation theory and related applications,” Axioms, Vol. 11, No. 12, 736 (2022). https://doi.org/https://doi.org/10.3390/axioms11120736.

    Article  Google Scholar 

  34. U. Z. Hrabova, I. V. Kal’chuk, and T. A. Stepanyuk, “Approximation of functions from the classes \({W}_{\beta }^{r}{H}^{\alpha }\) by Weierstrass integrals,” Ukr. Math. J., Vol. 69, No. 4, 598–608 (2017).https://doi.org/10.1007/s11253-017-1383-x.

  35. L. A. Vlasenko, A. G. Rutkas, and A. A. Chikrii, “On a differential game in an abstract parabolic system,” Proc. Steklov Inst. Math., Vol. 293 (Suppl 1), 254–269 (2016). https://doi.org/https://doi.org/10.1134/S0081543816050229.

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu. V. Pilipenko and A. A. Chikrij, “The oscillation processes of conflict control,” Prikl. Matem. Mekh., Vol. 57, No. 3, 3–14 (1993).

    Google Scholar 

  37. A. A. Chikrii and I. S. Rappoport, “Method of resolving functions in the theory of conflict-controlled processes,” Cybern. Syst. Analysis, Vol. 48, No. 4, 512–531 (2012). https://doi.org/https://doi.org/10.1007/s10559-012-9430-y.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Zhyhallo.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 3, May–June, 2023, pp. 106–114

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhyhallo, T.V., Kharkevych, Y.I. Some Asymptotic Properties of the Solutions of Laplace Equations in a Unit Disk. Cybern Syst Anal 59, 449–456 (2023). https://doi.org/10.1007/s10559-023-00579-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00579-x

Keywords

Navigation