Skip to main content

Advertisement

Log in

The Function of Circular RNAs in Myocardial Ischemia–Reperfusion Injury: Underlying Mechanisms and Therapeutic Advancement

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Myocardial ischemia reperfusion injury (MIRI) represents a prevalent and severe cardiovascular condition that arises primarily after myocardial infarction recanalization, cardiopulmonary bypass surgery, and both stable and unstable angina pectoris. MIRI can induce malignant arrhythmias and heart failure, thereby increasing the morbidity and mortality rates associated with cardiovascular diseases. Hence, it is important to assess the potential pathological mechanisms of MIRI and develop effective treatments. The role of circular RNAs (circRNAs) in MIRI has increasingly become a topic of interest in recent years. Moreover, significant evidence suggests that circRNAs play a critical role in MIRI pathogenesis, thereby representing a promising therapeutic target. This review aimed to provide a comprehensive overview of the current understanding of the role of circRNAs in MIRI and discuss the mechanisms through which circRNAs contribute to MIRI development and progression, including their effects on apoptosis, inflammation, oxidative stress, and autophagy. Furthermore, the potential therapeutic applications of circRNAs in MIRI treatment, including the use of circRNA-based therapies and modulation of circRNA expression levels, have been explored. Overall, this paper highlights the importance of circRNAs in MIRI and underscores their potential as novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Becker AC, Lantz CW, Forbess JM, et al. Cardiopulmonary bypass-induced inflammation and myocardial ischemia and reperfusion injury stimulates accumulation of soluble MER. Pediatr Crit Care Med. 2021;22(9):822–31. https://doi.org/10.1097/PCC.0000000000002725

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the american heart association. Circulation. 2022;145(8):e153-e639. https://doi.org/10.1161/CIR.0000000000001052

  3. Zhang D, Wu H, Liu D, et al. Research progress on the mechanism and treatment of inflammatory response in myocardial ischemia-reperfusion injury. Heart Surg Forum. 2022;25(3):E462–8. https://doi.org/10.1532/hsf.4725

    Article  PubMed  Google Scholar 

  4. Su Y, Zhu C, Wang B, et al. Circular RNA Foxo3 in cardiac ischemia-reperfusion injury in heart transplantation: a new regulator and target. Am J Transplant. 2021;21(9):2992–3004. https://doi.org/10.1111/ajt.16475

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, et al. Ischemia/reperfusion injury: pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm. 2020;29(2020):8405370. https://doi.org/10.1155/2020/8405370

    Article  CAS  Google Scholar 

  6. Cai J, Chen X, Liu X, et al. AMPK: the key to ischemia-reperfusion injury. J Cell Physiol. 2022;237(11):4079–96. https://doi.org/10.1002/jcp.30875

    Article  CAS  PubMed  Google Scholar 

  7. Ofir M, Arad M, Porat E, et al. Increased glycogen stores due to gamma-AMPK overexpression protects against ischemia and reperfusion damage. Biochem Pharmacol. 2008;75(7):1482–91. https://doi.org/10.1016/j.bcp.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  8. Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123(1):141–8. https://doi.org/10.1182/blood-2013-07-514992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wallert M, Ziegler M, Wang X, et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol. 2019;26:101292. https://doi.org/10.1016/j.redox.2019.101292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Chen B, Yang X, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 2019;140(9):751–64. https://doi.org/10.1161/CIRCULATIONAHA.118.039262

    Article  CAS  PubMed  Google Scholar 

  11. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye J, Wang R, Wang M, et al. Hydroxysafflor yellow A ameliorates myocardial ischemia/reperfusion injury by suppressing calcium overload and apoptosis. Oxid Med Cell Longev. 2021;21(2021):6643615. https://doi.org/10.1155/2021/6643615

    Article  CAS  Google Scholar 

  13. Yao H, Xie Q, He Q, et al. Pretreatment with panaxatriol saponin attenuates mitochondrial apoptosis and oxidative stress to facilitate treatment of myocardial ischemia-reperfusion injury via the regulation of Keap1/Nrf2 Activity. Oxid Med Cell Longev. 2022;2022:9626703. https://doi.org/10.1155/2022/9626703

  14. Zhang H, Liu Y, Cao X, et al. Nrf2 promotes inflammation in early myocardial ischemia-reperfusion via recruitment and activation of macrophages. Front Immunol. 2021;12:763760. https://doi.org/10.3389/fimmu.2021.763760

  15. Li L, Lin L, Lei S, et al. Maslinic acid inhibits myocardial ischemia-reperfusion injury-induced apoptosis and necroptosis via promoting autophagic flux. DNA Cell Biol. 2022;41(5):487–97. https://doi.org/10.1089/dna.2021.0918

    Article  CAS  PubMed  Google Scholar 

  16. Zhao WK, Zhou Y, Xu TT, et al. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury. Oxid Med Cell Longev. 2021;23(2021):9929687. https://doi.org/10.1155/2021/9929687

    Article  CAS  Google Scholar 

  17. Zhang Y, Liu D, Hu H, et al. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother. 2019;120:109464. https://doi.org/10.1016/j.biopha.2019.109464

    Article  CAS  PubMed  Google Scholar 

  18. Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172. https://doi.org/10.1186/s12943-020-01286-3

  19. Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–3517. https://doi.org/10.7150/thno.42174

  20. Li J, Sun D, Pu W, et al. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6(4):319–36. https://doi.org/10.1016/j.trecan.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  21. Gomes CPC, Schroen B, Kuster GM, et al. Regulatory RNAs in heart failure. Circulation. 2020;141(4):313–28. https://doi.org/10.1161/CIRCULATIONAHA.119.042474

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression [published correction appears in PLoS Genet. 2013;9(12). https://doi.org/10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855

  23. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90. https://doi.org/10.1038/s41580-020-0243-y

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428-442. https://doi.org/10.1016/j.molcel.2018.06.034

  25. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  26. Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15(3):163–75. https://doi.org/10.1038/nrg3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Xue W, Li X, et al. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016;15(3):611–24. https://doi.org/10.1016/j.celrep.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  28. Liang D, Tatomer DC, Luo Z, et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940-954.e3. https://doi.org/10.1016/j.molcel.2017.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–47. https://doi.org/10.1101/gad.251926.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats [published correction appears in RNA. 2013 Mar;19(3):426]. RNA. 2013;19(2):141–157. https://doi.org/10.1261/rna.035667.112.

  31. Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47. https://doi.org/10.1016/j.cell.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  32. Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations [published correction appears in Cell. 2016 Aug 11;166(4):1055–1056]. Cell. 2016;165(2):289–302. https://doi.org/10.1016/j.cell.2016.03.020

  33. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Liu CX, Xue W, et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 2017;67(2):214-227.e7. https://doi.org/10.1016/j.molcel.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  35. Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168–82. https://doi.org/10.1101/gad.270421.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

  37. Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103–11. https://doi.org/10.1016/j.celrep.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  38. Altesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588–600. https://doi.org/10.1002/jcp.27384

    Article  CAS  PubMed  Google Scholar 

  39. Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852–6. https://doi.org/10.1073/pnas.73.11.3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Liu T, Wang X, et al. Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16(1):58. https://doi.org/10.1186/s12943-017-0630-y

  41. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language. Cell. 2011;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. https://doi.org/10.1038/nature09144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  44. Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124–2HG [published correction appears in Autophagy. 2022 Jan;18(1):234] [published correction appears in Autophagy. 2020 Aug;16(8):1553] [published correction appears in Autophagy. 2020 Nov;16(11):2117–2118]. Autophagy. 2017;13(10):1722–1741. https://doi.org/10.1080/15548627.2017.1356975

  45. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215. https://doi.org/10.1038/ncomms11215.

  46. Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab. 2018;9:69–83. https://doi.org/10.1016/j.molmet.2018.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kristensen LS, Okholm TLH, Venø MT, et al. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15(2):280–91. https://doi.org/10.1080/15476286.2017.1409931

    Article  PubMed  Google Scholar 

  48. Yu CY, Li TC, Wu YY, et al. The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun. 2017;8(1):1149. https://doi.org/10.1038/s41467-017-01216-w.

  49. Li Q, Pan X, Zhu D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 2019;70(4):1298–316. https://doi.org/10.1002/hep.30671

    Article  CAS  PubMed  Google Scholar 

  50. Ma W, Wei D, Li X, et al. CircPCNX promotes PDGF-BB-induced proliferation and migration of human aortic vascular smooth muscle cells through regulating miR-1278/DNMT1 Axis. Cardiovasc Drugs Ther. 2023;37(5):877–89. https://doi.org/10.1007/s10557-022-07342-y

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Zhang X, Yu Z, et al. Circ_0026218 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell dysfunction by regulating miR-188–3p/TLR4/NF-κB pathway. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-022-07416-x.

  52. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus [published correction appears in Nat Struct Mol Biol. 2017;24(2):194]. Nat Struct Mol Biol. 2015;22(3):256–264. https://doi.org/10.1038/nsmb.2959

  53. Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38(18):1402–12. https://doi.org/10.1093/eurheartj/ehw001

    Article  CAS  PubMed  Google Scholar 

  54. Zeng Y, Du WW, Wu Y, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 2017;7(16):3842–3855. https://doi.org/10.7150/thno.19764

  55. Huang S, Li X, Zheng H, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 2019;139(25):2857–76. https://doi.org/10.1161/CIRCULATIONAHA.118.038361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995;268(5209):415–7. https://doi.org/10.1126/science.7536344

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21(2):172–9. https://doi.org/10.1261/rna.048272.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9. https://doi.org/10.1016/j.molcel.2017.02.017

  59. Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9–21.e7. https://doi.org/10.1016/j. molcel.2017.02.021

  60. Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–41. https://doi.org/10.1038/cr.2017.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24(2):357–70. https://doi.org/10.1038/cdd.2016.133.

    Article  CAS  PubMed  Google Scholar 

  62. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–21. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J Physiol Sci. 2015;65(3):201–15. https://doi.org/10.1007/s12576-015-0365-8

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang YN, Luo YB, Xu G, et al. CircHECTD1 promoted MIRI-associated inflammation via inhibiting miR-138-5p and upregulating ROCK2. Kaohsiung J Med Sci. 2023;39(7):675–87. https://doi.org/10.1002/kjm2.12686

    Article  CAS  PubMed  Google Scholar 

  65. Li X, Guo L, Wang J, et al. Pro-fibrotic and apoptotic activities of circARAP1 in myocardial ischemia-reperfusion injury. Eur J Med Res. 2023;28(1):84. https://doi.org/10.1186/s40001-023-01001-0

  66. Liu X, Dou B, Tang W, et al. Cardioprotective effects of circ_0002612 in myocardial ischemia/reperfusion injury correlate with disruption of miR-30a-5p-dependent Ppargc1a inhibition. Int Immunopharmacol. 2023;117:110006. https://doi.org/10.1016/j.intimp.2023.110006

    Article  CAS  PubMed  Google Scholar 

  67. Yuan C, Lu J, Chen Z, et al. Circ-GTF2I/miR-590–5p axis aggravates myocardial ischemia-reperfusion injury by regulating Kelch repeat and BTB domain-containing protein 7. Evid Based Complement Alternat Med. 2022; 2022:2327669. https://doi.org/10.1155/2022/2327669

  68. Li M, Ding W, Tariq MA, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics. 2018;8(21):5855–5869. https://doi.org/10.7150/thno.27285

  69. Li D, You J, Mao C, et al. Circular RNA Fbxl5 regulates cardiomyocyte apoptosis during ischemia reperfusion injury via sponging microRNA-146a. J Inflamm Res. 2022;15:2539–2550. https://doi.org/10.2147/JIR.S360129

  70. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  71. Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J. 2021;40(19):e108863. https://doi.org/10.15252/embj.2021108863

  72. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773–89. https://doi.org/10.1038/s41569-020-0403-y.

    Article  PubMed  Google Scholar 

  74. Popov SV, Mukhomedzyanov AV, Voronkov NS, et al. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 2023;28(1–2):55–80. https://doi.org/10.1007/s10495-022-01786-1

    Article  CAS  PubMed  Google Scholar 

  75. Zhang CL, Long TY, Bi SS, et al. CircPAN3 ameliorates myocardial ischaemia/reperfusion injury by targeting miR-421/Pink1 axis-mediated autophagy suppression [published correction appears in Lab Invest. 2021 Jan 22;]. Lab Invest. 2021;101(1):89–103. https://doi.org/10.1038/s41374-020-00483-4

  76. Huang C, Shu L, Zhang H, et al. Circ_ZNF512-mediated miR-181d-5p inhibition limits cardiomyocyte autophagy and promotes myocardial ischemia/reperfusion injury through an EGR1/mTORC1/TFEB-based mechanism. J Med Chem. 2022;65(3):1808–21. https://doi.org/10.1021/acs.jmedchem.1c00745

    Article  CAS  PubMed  Google Scholar 

  77. Jin P, Li LH, Shi Y, et al. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene. 2021;767:145075. https://doi.org/10.1016/j.gene.2020.145075

    Article  CAS  PubMed  Google Scholar 

  78. Sun G, Shen JF, Wei XF, et al. Circular RNA Foxo3 relieves myocardial ischemia/reperfusion injury by suppressing autophagy via inhibiting HMGB1 by repressing KAT7 in myocardial infarction. J Inflamm Res. 2021;14:6397–6407. https://doi.org/10.2147/JIR.S339133

  79. Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ. 2019;26(7):1299–315. https://doi.org/10.1038/s41418-018-0206-4

    Article  CAS  PubMed  Google Scholar 

  80. Qiu Z, Wang Y, Liu W, et al. CircHIPK3 regulates the autophagy and apoptosis of hypoxia/reoxygenation-stimulated cardiomyocytes via the miR-20b-5p/ATG7 axis. Cell Death Discov. 2021;7(1):64. https://doi.org/10.1038/s41420-021-00448-6

  81. Bagheri F, Khori V, Alizadeh AM, et al. Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sci. 2016;165:43–55. https://doi.org/10.1016/j.lfs.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  82. Mokhtari-Zaer A, Marefati N, Atkin SL, et al. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol. 2018;234(1):214–22. https://doi.org/10.1002/jcp.26848

    Article  CAS  PubMed  Google Scholar 

  83. Zheng H, Huang S, Wei G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther. 2022;30(11):3477–98. https://doi.org/10.1016/j.ymthe.2022.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang L, Wang C, Sun Z, et al. Knockdown of Mmu-circ-0001380 attenuates myocardial ischemia/reperfusion injury via modulating miR-106b-5p/Phlpp2 axis. J Cardiovasc Transl Res. 2023;16(5):1064–77. https://doi.org/10.1007/s12265-023-10383-9

    Article  PubMed  Google Scholar 

  85. Jin L, Zhang Y, Jiang Y, et al. Circular RNA Rbms1 inhibited the development of myocardial ischemia reperfusion injury by regulating miR-92a/BCL2L11 signaling pathway. Bioengineered. 2022;13(2):3082–92. https://doi.org/10.1080/21655979.2022.2025696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu J, Dong W, Gao C, et al. Salvianolic acid B protects cardiomyocytes from ischemia/reperfusion injury by mediating circTRRAP/miR-214-3p/SOX6 axis. Int Heart J. 2022;63(6):1176–86. https://doi.org/10.1536/ihj.22-102

    Article  CAS  PubMed  Google Scholar 

  87. Wang L, Su H, Liu W. Hsa_circ_0010729 regulates H2O2-induced myocardial injury by regulating miR-1184/RIPK1 axis. Transpl Immunol. 2022; 74:101653. https://doi.org/10.1016/j.trim.2022.101653.

  88. Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:5698931. https://doi.org/10.1155/2016/5698931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6. https://doi.org/10.1126/science.1230719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kusuoka H, Porterfield JK, Weisman HF, et al. Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest. 1987;79(3):950–961. https://doi.org/10.1172/JCI112906

  91. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sandanger Ø, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2013;99(1):164–74. https://doi.org/10.1093/cvr/cvt091

    Article  CAS  PubMed  Google Scholar 

  93. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation [published correction appears in Atherosclerosis. 2018; 273:157]. Atherosclerosis. 2018; 269:262-271https://doi.org/10.1016/j.atherosclerosis.2017.12.027

  94. Algoet M, Janssens S, Himmelreich U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023;33(6):357–366. https://doi.org/10.1016/j.tcm.2022.02.005

  95. Jin A, Zhang Q, Cheng H, et al. Circ_0050908 up-regulates TRAF3 by sponging miR-324–5p to aggravate myocardial ischemia-reperfusion injury. Int Immunopharmacol. 2022;108:108740. https://doi.org/10.1016/j.intimp.2022.108740

  96. Hu X, Ma R, Cao J, et al. CircSAMD4A aggravates H/R-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-138-5p. J Cell Mol Med. 2022;26(6):1776–84. https://doi.org/10.1111/jcmm.16093

    Article  CAS  PubMed  Google Scholar 

  97. Zhu Y, Zou C, Jia Y, et al. Knockdown of circular RNA circMAT2B reduces oxygen-glucose deprivation-induced inflammatory injury in H9c2 cells through up-regulating miR-133. Cell Cycle. 2020;19(20):2622–30. https://doi.org/10.1080/15384101.2020.1814025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang C, Zhang B. RNA therapeutics: updates and future potential. Sci China Life Sci. 2023;66(1):12–30. https://doi.org/10.1007/s11427-022-2171-2

    Article  CAS  PubMed  Google Scholar 

  99. Brenner S, Jacob F, Meslson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;190:576–81. https://doi.org/10.1038/190576a0

    Article  CAS  PubMed  Google Scholar 

  100. Chow LT, Gelinas RE, Broker TR, et al. An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell. 1977;12(1):1–8. https://doi.org/10.1016/0092-8674(77)90180-5

    Article  CAS  PubMed  Google Scholar 

  101. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

  102. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anthony K. RNA-based therapeutics for neurological diseases. RNA Biol. 2022;19(1):176–90. https://doi.org/10.1080/15476286.2021.2021650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19(3):188–206. https://doi.org/10.1038/s41571-021-00585-y

    Article  CAS  PubMed  Google Scholar 

  105. Bougea A, Stefanis L. microRNA and circRNA in Parkinson’s disease and atypical parkinsonian syndromes. Adv Clin Chem. 2023;115:83–133. https://doi.org/10.1016/bs.acc.2023.03.002

    Article  PubMed  Google Scholar 

  106. Zhao Q, Liu J, Deng H, et al. Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell. 2020;183(1):76-93.e22. https://doi.org/10.1016/j.cell.2020.08.009

    Article  CAS  PubMed  Google Scholar 

  107. Fan W, Pang H, Xie Z, et al. Circular RNAs in diabetes mellitus and its complications. Front Endocrinol (Lausanne). 2022;13:885650. https://doi.org/10.3389/fendo.2022.885650

  108. Wang K, Gao XQ, Wang T, et al. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther. 2023;37(1):181–98. https://doi.org/10.1007/s10557-021-07228-5

    Article  CAS  PubMed  Google Scholar 

  109. Liu X, Zhang Y, Zhou S, et al. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 2022;348:84–94. https://doi.org/10.1016/j.jconrel.2022.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lavenniah A, Luu TDA, Li YP, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther. 2020;28(6):1506–17. https://doi.org/10.1016/j.ymthe.2020.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang H, Li ZB, Wu JY, et al. Circ-100338 induces angiogenesis after myocardial ischemia-reperfusion injury by sponging miR-200a-3p. Eur Rev Med Pharmacol Sci. 2020;24(11):6323–6332. https://doi.org/10.26355/eurrev_202006_21530.

  112. Huang C, Qu Y, Feng F, et al. Cardioprotective effect of circ_SMG6 knockdown against myocardial ischemia/reperfusion injury correlates with miR-138–5p-Mediated EGR1/TLR4/TRIF inactivation. Oxid Med Cell Longev. 2022;2022:1927260. https://doi.org/10.1155/2022/1927260

  113. Xiao Y, Oumarou DB, Wang S, et al. Circular RNA involved in the protective effect of Malva sylvestris L. on myocardial ischemic/re-perfused injury. Front Pharmacol. 2020;11:520486. https://doi.org/10.3389/fphar.2020.520486

  114. Abe N, Matsumoto K, Nishihara M, et al. Rolling Circle Translation of Circular RNA in Living Human Cells. Sci Rep. 2015;5:16435. https://doi.org/10.1038/srep16435

  115. Yu L, Liu Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun. 2019;516(2):546–550. https://doi.org/10.1016/j.bbrc.2019.06.087

  116. Loan Young T, Chang Wang K, James Varley A, et al. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv Drug Deliv Rev. 2023;197:114826. https://doi.org/10.1016/j.addr.2023.114826

    Article  CAS  PubMed  Google Scholar 

  117. Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun. 2018;9(1):2629. https://doi.org/10.1038/s41467-018-05096-6.

  118. Liu GW, Guzman EB, Menon N, et al. Lipid nanoparticles for nucleic acid delivery to endothelial cells. Pharm Res. 2023;40(1):3–25. https://doi.org/10.1007/s11095-023-03471-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications [published correction appears in Cell. 2022 Jun 23;185(13):2390]. Cell. 2022;185(12):2016–2034. https://doi.org/10.1016/j.cell.2022.04.021

Download references

Funding

This work was supported by grant from the National Natural Science foundation of China (No.82170286; No.81960051); Construction Funding from Characteristic Key Laboratory of Guizhou Province, No. [2021]313.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization of this review was spearheaded by Kaiyuan Chen, while Junhou Lu and Guiyou Liang conducted an extensive literature search. Kaiyuan Chen took the lead in drafting the manuscript, with critical editing contributions from Zhou Liu and Guiyou Liang. Hu Xuanyi and Yang Siyuan are responsible for language proofreading. All authors diligently reviewed and provided their approval for the final version of the manuscript.

Corresponding author

Correspondence to Gui-You Liang.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethic Approval

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicable.

Consent to Publish

The authors have reviewed the final version of the manuscript and approve it for publication. To the best of our knowledge and belief, this manuscript has not been published in whole or in part nor is it being considered for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KY., Liu, Z., Lu, JH. et al. The Function of Circular RNAs in Myocardial Ischemia–Reperfusion Injury: Underlying Mechanisms and Therapeutic Advancement. Cardiovasc Drugs Ther (2024). https://doi.org/10.1007/s10557-024-07557-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-024-07557-1

Keywords

Navigation