Skip to main content

Advertisement

Log in

Rationale and Design of the SOTA-P-CARDIA Trial (ATRU-V): Sotagliflozin in HFpEF Patients Without Diabetes

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure (HF). This syndrome is associated with an elevated morbi-mortality, and effective therapies are urgently needed. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are the first pharmacological class that has demonstrated to reduce hospitalization and cardiovascular mortality in large clinical trials in HFpEF. Furthermore, the dual SGLT 1/2 inhibitor sotagliflozin has shown a reduction in cardiovascular outcomes in diabetic HF patients, regardless of ejection fraction Sotagliflozin on Cardiovascular Events in Patients with Type 2 Diabetes Post Worsening Heart Failure (SOLOIST-WHF) Trial, and prevents the development of HF in patients with diabetes and chronic kidney disease Sotagliflozin on Cardiovascular and Renal Events in Patients with Type 2 Diabetes and Moderate Renal Impairment Who Are at Cardiovascular Risk (SCORED) trial. The major objective of the Sotagliflozin in Heart Failure With Preserved Ejection Fraction Patients (SOTA-P-CARDIA) trial (NCT05562063) is to investigate whether the observed cardiorenal benefits of sotagliflozin in HF patients with diabetes can be extended to a non-diabetic population. The SOTA-P-CARDIA is a prospective, randomized, double-blinded, placebo-controlled study that will randomize non-diabetic patients with the universal definition of HFpEF (ejection fraction > 50% assessed the day of randomization). Qualifying patients will be randomized, in blocks of 4, to receive either sotagliflozin or placebo for a period of 6 months. The primary outcome is changes in left ventricular mass by cardiac magnetic resonance from randomization to end of the study between the groups. Secondary end points include changes in peak VO2; myocardial mechanics, interstitial myocardial fibrosis, and volume of epicardial adipose tissue; distance in the 6-min walk test; and quality of life. Finally, the authors expect that this trial will help to clarify the potential benefits of the use of sotagliflozin in non-diabetic HFpEF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time A systematic review. Eur J Heart Fail. 2016;18:242–52.

    Article  PubMed  Google Scholar 

  2. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  PubMed  Google Scholar 

  3. Heidenreich PA, Bozkurt B, Aguilar D, et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e876–94.

    PubMed  Google Scholar 

  4. Simmonds SJ, Cuijpers I, Heymans S, Jones EAV. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  6. Pistelli L, Parisi F, Correale M, et al. Gliflozins: from antidiabetic drugs to cornerstone in heart failure therapy-a boost to their utilization and multidisciplinary approach in the management of heart failure. J Clin Med. 2023;12:379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:e153-639.

    Article  PubMed  Google Scholar 

  8. Packer M, Zannad F, Anker SD. Heart failure and a preserved ejection fraction: a side-by-side examination of the PARAGON-HF and EMPEROR-Preserved trials. Circulation. 2021;144:1193–5.

    Article  PubMed  Google Scholar 

  9. Pitt B, Bhatt DL, Metra M. Does SGLT1 inhibition add to the benefits of SGLT2 inhibition in the prevention and treatment of heart failure? Eur Heart J. 2022;43:4754–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther. 2017;11:2905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61.

    Article  CAS  PubMed  Google Scholar 

  12. Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387:1089–98.

    Article  PubMed  Google Scholar 

  13. Savarese G, Stolfo D, Sinagra G, Lund LH. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol. 2022;19:100–16.

    Article  PubMed  Google Scholar 

  14. Lam CSP, Voors AA, Piotr P, McMurray JJV, Solomon SD. Time to rename the middle child of heart failure: heart failure with mildly reduced ejection fraction. Eur Heart J. 2020;41:2353–5.

    Article  PubMed  Google Scholar 

  15. Packer M. Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance. Circulation. 2020;141:2095–105.

    Article  CAS  PubMed  Google Scholar 

  16. Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023. https://doi.org/10.1038/s41569-022-00824-4.

  17. Santos-Gallego CG, Vahl TP, Goliasch G, et al. Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation. 2016;133:954–66.

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa K, Aguero J, Tilemann L, et al. Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. Am J Physiol Heart Circ Physiol. 2014;307(10):H1478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–44.

    Article  CAS  PubMed  Google Scholar 

  20. Santos-Gallego CG, Mayr M, Badimon J. SGLT2 inhibitors in heart failure: targeted metabolomics and energetic metabolism. Circulation. 2022;146(11):819–21.

    Article  CAS  PubMed  Google Scholar 

  21. Burrage MK, Hundertmark M, Valkovič L, et al. Energetic basis for exercise-induced pulmonary congestion in heart failure with preserved ejection fraction. Circulation. 2021;144(21):1664–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study. JACC Cardiovasc Imaging. 2021;14(2):393–407.

    Article  PubMed  Google Scholar 

  23. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2021;77:243–55.

    Article  CAS  PubMed  Google Scholar 

  24. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Empagliflozin improves quality of life in nondiabetic HFrEF patients Sub-analysis of the EMPATROPISM trial. Diabetes Metab Syndr. 2022;16(2):102417.

    Article  PubMed  Google Scholar 

  25. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM Study. JACC Heart Fail. 2021;9:578–89.

    Article  PubMed  Google Scholar 

  26. Pugliese NR, Paneni F, Mazzola M, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23:1858–71.

    Article  CAS  PubMed  Google Scholar 

  27. Tromp J, Packer M, Lam CS. The diverging role of epicardial adipose tissue in heart failure with reduced and preserved ejection fraction: not all fat is created equal. Eur J Heart Fail. 2021;23:1872–4.

    Article  PubMed  Google Scholar 

  28. Gorter TM, van Woerden G, Rienstra M, et al. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8:667–76.

    Article  PubMed  Google Scholar 

  29. Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA. Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8:657–66.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71:2360–72.

    Article  CAS  PubMed  Google Scholar 

  31. Packer M. Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes. JACC Heart Fail. 2021;9:535–49.

    Article  PubMed  Google Scholar 

  32. Di Franco A, Cantini G, Tani A, et al. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int J Cardiol. 2017;243:86–90.

    Article  PubMed  Google Scholar 

  33. Sayour AA, Ruppert M, Oláh A, et al. Effects of SGLT2 inhibitors beyond glycemic control-focus on myocardial SGLT1. Int J Mol Sci. 2021;22:9852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seidelmann SB, Feofanova E, Yu B, et al. Genetic variants in SGLT1, glucose tolerance, and cardiometabolic risk. J Am Coll Cardiol. 2018;72:1763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin H, Guan L, Meng L, Uzui H, Guo H. SGLT1 knockdown attenuates cardiac fibroblast activation in diabetic cardiac fibrosis. Front Pharmacol. 2021;12:700366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384:117–28.

    Article  CAS  PubMed  Google Scholar 

  37. Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384:129–39.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng C, Lin M, Chen Y, Xu H, Yan L, Dai H. Effects of sodium-glucose cotransporter type 2 inhibitors on cardiovascular, renal, and safety outcomes in patients with cardiovascular disease: a meta-analysis of randomized controlled trials. Cardiovasc Diabetol. 2021;20:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gilbert RE, Connelly KA. Reduction in the incidence of myocardial infarction with sodium-glucose linked cotransporter-2 inhibitors: evident and plausible. Cardiovasc Diabetol. 2019;18:6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021;6:148–58.

    Article  PubMed  Google Scholar 

  41. Li Y, Xu G. Sodium glucose cotransporter 1 (SGLT1) inhibitors in cardiovascular protection: Mechanism progresses and challenges. Pharmacol Res. 2022;176:106049.

    Article  CAS  PubMed  Google Scholar 

  42. Cefalo CMA, Cinti F, Moffa S, et al. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovasc Diabetol. 2019;18:20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rekhraj S, Gandy SJ, Szwejkowski BR, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–32.

    Article  CAS  PubMed  Google Scholar 

  44. Ponikowski P, Voors AA, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.

    Article  PubMed  Google Scholar 

  45. Andreini D, Conte E, Mushtaq S, et al. Comprehensive evaluation of left ventricle dysfunction by a new computed tomography scanner: the E-PLURIBUS Study. JACC Cardiovasc Imaging. 2022;S1936–878X(22)00490–9.

  46. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez Cordero AJ, et al. Not only how much, but also how to, when measuring epicardial adipose tissue. Magn Reson Imaging. 2022;86:149–51.

    Article  PubMed  Google Scholar 

Download references

Funding

This study has been funded by an Investigator-Initiated Grant to Dr. Badimon by Lexicon Pharmaceuticals, Inc. Dr Requena-Ibañez was sup- ported by a fellowship from La Caixa Foundation (ID 100010434). The fellowship code is LCF/BQ/EU21/11890141.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read, approved, and contributed equally to the final version of the manuscript.

Corresponding authors

Correspondence to Maeve Soto Pérez, Jorge Rodríguez-Capitán or Juan José Badimon.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The protocol was approved by the Mount Sinai Institutional Review Board (GCO 22–0574) and received IND 165123 by the FDA.

Consent to Participate

Informed consent is obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

This study has been funded by an Investigator-Initiated Grant to Dr. Badimon by Lexicon Pharmaceuticals, Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Drs. Soto Pérez and Rodríguez-Capitán share the first authorship

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, M.S., Rodríguez-Capitán, J., Requena-Ibáñez, J.A. et al. Rationale and Design of the SOTA-P-CARDIA Trial (ATRU-V): Sotagliflozin in HFpEF Patients Without Diabetes. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07469-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07469-6

Keywords

Navigation