Skip to main content

Advertisement

Log in

Obesity-Related Genetic Determinants of Heart Failure Prognosis

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Recent advances in genomics offer a smart option for predicting future risk of disease and prognosis. The objective of this study was to examine the prognostic value in heart failure (HF) patients, of a series of single nucleotide polymorphisms (SNPs).

Methods

A selection of 192 SNPs found to be related with obesity, body mass index, circulating lipids or cardiovascular diseases were genotyped in 191 patients with HF. Anthropometrical and clinical variables were collected for each patient, and death and readmission by HF were registered as the primary endpoint.

Results

A total of 53 events were registered during a follow-up period of 438 (263–1077) days (median (IQR)). Eight SNPs strongly related to obesity and HF prognosis were selected as possible prognostic variables. From these, rs10189761 and rs737337 variants were independently associated with HF prognosis (HR 2.295 (1.287–4.089, 95% CI); p = 0.005), whereas rs10423928, rs1800437, rs737337 and rs9351814 were related with bad prognosis only in obese patients (HR 2.142 (1.438–3.192, 95% CI); p = 0.00018). Combined scores of the genomic variants were highly predictive of poor prognosis.

Conclusions

SNPs rs10189761 and rs737337 were identified, for the first time, as independent predictors of major clinical outcomes in patients with HF. The data suggests an additive predictive value of these SNPs for a HF prognosis. In particular for obese patients, SNPs rs10423928, rs1800437, rs737337 and rs9351814 were related with a bad prognosis. Combined scores weighting the risk of each genomic variant could effect interesting new tools to stratify the prognostic risk of HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.

    Article  PubMed  Google Scholar 

  2. Krumholz HM, Chen YT, Wang Y, Vaccarino V, Radford MJ, Horwitz RI. Predictors of readmission among elderly survivors of admission with heart failure. Am Heart J. 2000;139(1 Pt 1):72–7.

    Article  CAS  PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245.

    PubMed  Google Scholar 

  4. Dorn GW 2nd. Genetics of common forms of heart failure. Curr Opin Cardiol. 2011;26(3):204–8.

    Article  PubMed  Google Scholar 

  5. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lavie CJ, Sharma A, Alpert MA, De Schutter A, Lopez-Jimenez F, Milani RV, et al. Update on obesity and obesity paradox in heart failure. Prog Cardiovasc Dis. 2016;58(4):393–400.

    Article  PubMed  Google Scholar 

  9. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    Article  PubMed  Google Scholar 

  10. Reis JP, Allen N, Gunderson EP, Lee JM, Lewis CE, Loria CM, et al. Excess body mass index- and waist circumference-years and incident cardiovascular disease: the CARDIA study. Obesity (Silver Spring). 2015;23(4):879–85.

    Article  Google Scholar 

  11. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34.

    Article  PubMed  Google Scholar 

  13. Lavie CJ, Osman AF, Milani RV, Mehra MR. Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am J Cardiol. 2003;91(7):891–4.

    Article  PubMed  Google Scholar 

  14. Clark AL, Fonarow GC, Horwich TB. Waist circumference, body mass index, and survival in systolic heart failure: the obesity paradox revisited. J Card Fail. 2011;17(5):374–80.

    Article  PubMed  Google Scholar 

  15. Khalid U, Ather S, Bavishi C, Chan W, Loehr LR, Wruck LM, et al. Pre-morbid body mass index and mortality after incident heart failure: the ARIC study. J Am Coll Cardiol. 2014;64(25):2743–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. American Diabetes Association (Corporate Author). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.

  17. Dichgans M, Malik R, Konig IR, Rosand J, Clarke R, Gretarsdottir S, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  18. Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL, Aulchenko YS, et al. Genomewide association studies of stroke. N Engl J Med. 2009;360(17):1718–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008;64(4):402–9.

    Article  PubMed  Google Scholar 

  20. Matarin M, Brown WM, Scholz S, Simon-Sanchez J, Fung HC, Hernandez D, et al. A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol. 2007;6(5):414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, Sturm JW, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–51.

    Article  CAS  PubMed  Google Scholar 

  23. Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012;44(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  24. El-Sayed Moustafa JS, Froguel P. From obesity genetics to the future of personalized obesity therapy. Nat Rev Endocrinol. 2013;9(7):402–13.

    Article  CAS  PubMed  Google Scholar 

  25. Rudolph A, Milne RL, Truong T, Knight JA, Seibold P, Flesch-Janys D, et al. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. Int J Cancer. 2015;136(6):E685–96.

    Article  CAS  PubMed  Google Scholar 

  26. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Viena, Austria. URL https://www.R-project.org/.

  27. Nakagomi A, Seino Y, Noma S, Kohashi K, Kosugi M, Kato K, et al. Relationships between the serum cholesterol levels, production of monocyte proinflammatory cytokines and long-term prognosis in patients with chronic heart failure. Intern Med. 2014;53(21):2415–24 DN/JST.JSTAGE/internalmedicine/53.2672.

    Article  CAS  PubMed  Google Scholar 

  28. Kahn MR, Kosmas CE, Wagman G, Serrao GW, Fallahi A, Grady KM, et al. Low-density lipoprotein levels in patients with acute heart failure. Congest Heart Fail. 2013;19(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  29. Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. den Hoed M, Ekelund U, Brage S, Grontved A, Zhao JH, Sharp SJ, et al. Genetic susceptibility to obesity and related traits in childhood and adolescence: influence of loci identified by genome-wide association studies. Diabetes. 2010;59(11):2980–8.

    Article  CAS  Google Scholar 

  31. Holzapfel C, Grallert H, Huth C, Wahl S, Fischer B, Doring A, et al. Genes and lifestyle factors in obesity: results from 12,462 subjects from MONICA/KORA. Int J Obes. 2010;34(10):1538–45.

    Article  CAS  Google Scholar 

  32. Almen MS, Jacobsson JA, Shaik JH, Olszewski PK, Cedernaes J, Alsio J, et al. The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children. BMC Med Genet. 2010;11:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jurvansuu JM, Goldman A. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein. PLoS One. 2011;6(9):e25317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang CS, Zhang H, Cheung CY, Xu M, Ho JC, Zhou W, et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat Commun. 2015;6:10206.

    Article  CAS  PubMed  Google Scholar 

  35. Dijk W, Kersten S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol. 2016;27(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang R. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol. 2016;6(4):150272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gomez-Ambrosi J, Pascual-Corrales E, Catalan V, Rodriguez A, Ramirez B, Romero S, et al. Altered concentrations in dyslipidemia evidence a role for ANGPTL8/betatrophin in lipid metabolism in humans. J Clin Endocrinol Metab. 2016;101(10):3803–11.

    Article  CAS  PubMed  Google Scholar 

  38. Maurer L, Brachs S, Decker AM, Brachs M, Leupelt V, Jumpertz von Schwartzenberg R, et al. Weight loss partially restores glucose-driven Betatrophin response in humans. J Clin Endocrinol Metab. 2016;101(11):4014–20.

    Article  CAS  PubMed  Google Scholar 

  39. McIntosh CH, Widenmaier S, Kim SJ. Pleiotropic actions of the incretin hormones. Vitam Horm. 2010;84:21–79.

    Article  CAS  PubMed  Google Scholar 

  40. Berglund LM, Lyssenko V, Ladenvall C, Kotova O, Edsfeldt A, Pilgaard K, et al. Glucose-dependent insulinotropic polypeptide stimulates osteopontin expression in the vasculature via endothelin-1 and CREB. Diabetes. 2016;65(1):239–54.

    CAS  PubMed  Google Scholar 

  41. Ussher JR, Campbell JE, Mulvihill EE, Baggio LL, Bates HE, McLean BA, et al. Inactivation of the glucose-dependent Insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab. 2018;27(2):450–60 e6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Instituto de Salud Carlos III, Spain, (ISCIII/PIE13/00024/Cofinanciado FEDER). The work of Beatriz Paradela-Dobarro was supported by ISCIII/FI11/00325. The genotyping service was carried out at CEGEN-PRB2-ISCIII, funded by grant PT13/0001, ISCIII-SGEFI/FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Alvarez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and the Ethics Committee for Human Studies at Galicia (Spanish region) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agra, R.M., Gago-Dominguez, M., Paradela-Dobarro, B. et al. Obesity-Related Genetic Determinants of Heart Failure Prognosis. Cardiovasc Drugs Ther 33, 415–424 (2019). https://doi.org/10.1007/s10557-019-06888-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06888-8

Keywords

Navigation