Skip to main content

Advertisement

Log in

Survival mechanisms of circulating tumor cells and their implications for cancer treatment

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fares, J., et al. (2020). Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 5(1), 28.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  2. Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australas Med J, 14, 146–149.

    Google Scholar 

  3. Taddei, M. L., et al. (2012). Anoikis: An emerging hallmark in health and diseases. The Journal of Pathology, 226(2), 380–393.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  4. Kanwar, N., et al. (2015). Identification of genomic signatures in circulating tumor cells from breast cancer. International Journal of Cancer, 137(2), 332–344.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  5. Chang, T. Y. (2021). Comparison of genetic profiling between primary tumor and circulating Tumor cells captured by Microfluidics in Epithelial Ovarian Cancer: Tumor Heterogeneity or Allele Dropout? Diagnostics (Basel) 11 (6).

  6. Zou, L., et al. (2020). Genome–wide copy number analysis of circulating tumor cells in breast cancer patients with liver metastasis. Oncology Reports, 44(3), 1075–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiu, C. G., et al. (2014). Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clinical Chemistry, 60(6), 873–885.

    Article  CAS  PubMed  Google Scholar 

  8. Steinert, G., et al. (2014). Immune escape and survival mechanisms in circulating Tumor cells of Colorectal Cancer. Cancer Research, 74(6), 1694–1704.

    Article  CAS  PubMed  Google Scholar 

  9. Müller, V., et al. (2005). Circulating tumor cells in breast cancer: Correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical Cancer Research, 11(10), 3678–3685.

    Article  PubMed  Google Scholar 

  10. Gires, O. A. O. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? (1573–7233 (Electronic)).

  11. Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, Y., et al. (2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129.

    Article  Google Scholar 

  13. Huaman, J. (2019). Fibronectin regulation of integrin B1 and SLUG in circulating Tumor cells. Cells 8 (6).

  14. Lecharpentier, A., et al. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105(9), 1338–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, M., et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong, A. J., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9(8), 997–1007.

    Article  CAS  PubMed  Google Scholar 

  17. Kallergi, G., et al. (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Research, 13(3), R59.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, X., et al. (2019). Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Science Advances, 5(6), eaav4275.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Chaffer, C. L., et al. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto, M., et al. (2017). Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer. Cancer Science, 108(6), 1210–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, M. H., et al. (2015). Circulating cancer stem cells: The importance to select. Chinese Journal of Cancer Research, 27(5), 437–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Theodoropoulos, P. A., et al. (2010). Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Letters, 288(1), 99–106.

    Article  CAS  PubMed  Google Scholar 

  23. Wan, S., et al. (2019). New Labyrinth Microfluidic device detects circulating Tumor cells expressing Cancer stem cell marker and circulating Tumor Microemboli in Hepatocellular Carcinoma. Scientific Reports, 9(1), 18575.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morel, A. P. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3 (8), e2888.

  25. Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papadaki, M. A., et al. (2019). Circulating Tumor cells with stemness and Epithelial-To-Mesenchymal Transition Features Are Chemoresistant and Predictive of poor outcome in metastatic breast Cancer. Molecular Cancer Therapeutics, 18(2), 437–447.

    Article  CAS  PubMed  Google Scholar 

  27. Follain, G., et al. (2020). Fluids and their mechanics in tumour transit: Shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.

    Article  CAS  PubMed  Google Scholar 

  28. Headley, M. B., et al. (2016). Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 531(7595), 513–517.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang, S. F., et al. (2008). Tumor cell cycle arrest induced by shear stress: Roles of integrins and smad. Proc Natl Acad Sci U S A, 105(10), 3927–3932.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu, A., et al. (2016). High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget, 7(31), 50239–50257.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Regmi, S., et al. (2017). High Shear stresses under Exercise Condition destroy circulating Tumor cells in a Microfluidic System. Scientific Reports, 7, 39975.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kienast, Y., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.

    Article  CAS  PubMed  Google Scholar 

  33. Marrella, A. (2021). High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS One 16 (1), e0245536.

  34. Jasuja, H., et al. (2023). Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication, 15(2), 025017.

    Article  ADS  PubMed Central  Google Scholar 

  35. Kim, O. H., et al. (2022). Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sciences, 308, 120936.

    Article  CAS  PubMed  Google Scholar 

  36. Piskounova, E., et al. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527(7577), 186–191.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schafer, Z. T., et al. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 461(7260), 109–113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica Et Biophysica Acta, 1863(12), 2977–2992.

    Article  CAS  PubMed  Google Scholar 

  39. Que, Z., et al. (2019). Jingfukang induces anti-cancer activity through oxidative stress-mediated DNA damage in circulating human lung cancer cells. Bmc Complementary and Alternative Medicine, 19(1), 204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ubellacker, J. M., et al. (2020). Lymph protects metastasizing melanoma cells from ferroptosis. Nature, 585(7823), 113–118.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paoli, P., et al. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica Et Biophysica Acta, 1833(12), 3481–3498.

    Article  CAS  PubMed  Google Scholar 

  42. Khan, S. U., et al. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical & Experimental Metastasis, 39(5), 715–726.

    Article  Google Scholar 

  43. Mohme, M., et al. (2017). Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nature Reviews. Clinical Oncology, 14(3), 155–167.

    Article  CAS  PubMed  Google Scholar 

  44. Vivier, E., et al. (2018). Innate lymphoid cells: 10 years on. Cell, 174(5), 1054–1066.

    Article  CAS  PubMed  Google Scholar 

  45. Cornel, A. M. (2020). MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 12 (7).

  46. Kärre, K., et al. (1986). Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319(6055), 675–678.

    Article  ADS  PubMed  Google Scholar 

  47. Ljunggren, H. G., & Kärre, K. (1985). Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. Journal of Experimental Medicine, 162(6), 1745–1759.

    Article  CAS  PubMed  Google Scholar 

  48. Brodbeck, T., et al. (2014). Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Molecular Cancer, 13, 244.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gül, N., et al. (2014). Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J Clin Invest, 124(2), 812–823.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xue, D., et al. (2018). Role of regulatory T cells and CD8(+) T lymphocytes in the dissemination of circulating tumor cells in primary invasive breast cancer. Oncol Lett, 16(3), 3045–3053.

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Liu, J., et al. (2019). Increased stromal infiltrating lymphocytes are Associated with circulating Tumor cells and metastatic relapse in breast Cancer patients after Neoadjuvant Chemotherapy. Cancer Manag Res, 11, 10791–10800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smolkova, B., et al. (2020). Increased stromal infiltrating lymphocytes are Associated with the risk of Disease Progression in Mesenchymal circulating Tumor cell-positive primary breast Cancer patients. International Journal of Molecular Sciences, 21, 24.

    Article  Google Scholar 

  53. Liu, X., et al. (2023). Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell, 41(2), 272–287. e9.

    Article  CAS  PubMed  Google Scholar 

  54. Lo, H. C., et al. (2020). Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer, 1(7), 709–722.

    Article  CAS  PubMed  Google Scholar 

  55. Hope, J. M. (2021). Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death. Journal of Cell Science 134 (4).

  56. Barnes, J. M. (2012). Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 7 (12), e50973.

  57. Moose, D. L., et al. (2020). Cancer cells resist Mechanical Destruction in circulation via RhoA/Actomyosin-Dependent mechano-adaptation. Cell Rep, 30(11), 3864–3874e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi, H. Y., et al. (2019). Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Research, 21(1), 6.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  59. Chen, X., et al. (2022). YAP1 activation promotes epithelial-mesenchymal transition and cell survival of renal cell carcinoma cells under shear stress. Carcinogenesis, 43(4), 301–310.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  60. Mitchell, M. J., et al. (2015). Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. American Journal of Physiology. Cell Physiology, 309(11), C736–C746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, Z. (2022). Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion. Journal of Cell Science 135 (10).

  62. Maeshiro, M., et al. (2021). Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Scientific Reports, 11(1), 6150.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ortiz-Otero, N., et al. (2020). Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget, 11(12), 1037–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hagihara, T., et al. (2019). Hydrodynamic stress stimulates growth of cell clusters via the ANXA1/PI3K/AKT axis in colorectal cancer. Scientific Reports, 9(1), 20027.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Osmulski, P. A., et al. (2021). Contacts with macrophages promote an aggressive Nanomechanical phenotype of circulating Tumor cells in prostate Cancer. Cancer Research, 81(15), 4110–4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, Q., et al. (2020). Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. Journal of Experimental & Clinical Cancer Research : Cr, 39(1), 25.

    Article  ADS  CAS  PubMed Central  Google Scholar 

  67. Donato, C., et al. (2020). Hypoxia triggers the intravasation of clustered circulating Tumor cells. Cell Rep, 32(10), 108105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Labuschagne, C. F., et al. (2019). Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab, 30(4), 720–734e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hong, X., et al. (2021). The Lipogenic Regulator SREBP2 induces transferrin in circulating Melanoma cells and suppresses ferroptosis. Cancer Discovery, 11(3), 678–695.

    Article  CAS  PubMed  Google Scholar 

  70. Sun, B., et al. (2017). Midkine promotes hepatocellular carcinoma metastasis by elevating anoikis resistance of circulating tumor cells. Oncotarget, 8(20), 32523–32535.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Malin, D., et al. (2015). ERK-regulated alphab-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene, 34(45), 5626–5634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haemmerle, M., et al. (2017). Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nature Communications, 8(1), 310.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Jin, L., et al. (2015). Glutamate dehydrogenase 1 signals through Antioxidant Glutathione Peroxidase 1 to regulate Redox Homeostasis and Tumor Growth. Cancer Cell, 27(2), 257–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin, L., et al. (2018). The PLAG1-GDH1 Axis promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Molecular Cell, 69(1), 87–99e7.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, X., et al. (2022). Shear stress enhances anoikis resistance of cancer cells through ROS and NO suppressed degeneration of Caveolin-1. Free Radical Biology and Medicine, 193(Pt 1), 95–107.

    CAS  PubMed  Google Scholar 

  76. Kim, H., et al. (2017). Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. British Journal of Cancer, 116(3), 370–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Du, S., et al. (2018). NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death and Disease, 9(10), 948.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tian, T., et al. (2022). CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis. Redox Biology, 58, 102544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. N., et al. (2018). CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 37(46), 6025–6040.

    Article  CAS  PubMed  Google Scholar 

  80. Sawyer, B. T., et al. (2020). Targeting fatty acid oxidation to promote Anoikis and inhibit ovarian Cancer progression. Molecular Cancer Research, 18(7), 1088–1098.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Koppenol, W. H., et al. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337.

    Article  CAS  PubMed  Google Scholar 

  82. Stacpoole, P. W. (2017). Therapeutic targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. JNCI: Journal of the National Cancer Institute, 109, 11.

    Article  Google Scholar 

  83. Kamarajugadda, S., et al. (2012). Glucose oxidation modulates anoikis and tumor metastasis. Molecular and Cellular Biology, 32(10), 1893–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, J., et al. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.

    Article  PubMed  Google Scholar 

  85. Maurer, G. D., et al. (2019). Loss of cell-matrix contact increases hypoxia-inducible factor-dependent transcriptional activity in glioma cells. Biochemical and Biophysical Research Communications, 515(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, T. (2014). HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Scientific Reports 4 (1).

  87. Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-Organizing Principle. 327 (5961), 46–50.

  88. del Pozo, M. A., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901–908.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li, D. (2023). Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. Journal of Biological Chemistry 299 (12).

  90. Han, H. J., et al. (2021). Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Letters, 508, 59–72.

    Article  CAS  PubMed  Google Scholar 

  91. Peppicelli, S. (2019). Anoikis Resistance as a Further Trait of Acidic-Adapted Melanoma Cells. J Oncol 2019, 8340926.

  92. Corbet, C., et al. (2020). TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nature Communications, 11(1), 454.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wheatley, S. P., & Altieri, D. C. (2019). Survivin at a glance. Journal of Cell Science, 132, 7.

    Article  Google Scholar 

  94. Végran, F., et al. (2013). Survivin-3B potentiates immune escape in cancer but also inhibits the toxicity of cancer chemotherapy. Cancer Research, 73(17), 5391–5401.

    Article  PubMed  Google Scholar 

  95. Yie, S. M. (2006). Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RT-PCR ELISA. Clinical & Experimental Metastasis 23 (5–6), 279 – 89.

  96. Yie, S., et al. (2008). Detection of Survivin-expressing circulating Cancer cells (CCCs) in Peripheral blood of patients with gastric and colorectal Cancer reveals high risks of Relapse. Annals of Surgical Oncology, 15(11), 3073–3082.

    Article  PubMed  Google Scholar 

  97. Yie, S. M., et al. (2009). Clinical significance of detecting survivin-expressing circulating cancer cells in patients with non-small cell lung cancer. Lung Cancer, 63(2), 284–290.

    Article  PubMed  Google Scholar 

  98. Cao, M., et al. (2009). Detection of survivin-expressing circulating cancer cells in the peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance. Clinical & Experimental Metastasis, 26(7), 751–758.

    Article  CAS  Google Scholar 

  99. Ning, Y., et al. (2015). Cytokeratin-20 and survivin-expressing circulating Tumor cells predict survival in metastatic colorectal Cancer patients by a combined immunomagnetic qRT-PCR Approach. Molecular Cancer Therapeutics, 14(10), 2401–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, J., et al. (2023). Association of survivin positive circulating tumor cell levels with immune escape and prognosis of osteosarcoma. Journal of Cancer Research and Clinical Oncology, 149(15), 13741–13751.

    Article  CAS  PubMed  Google Scholar 

  101. Sun, C., et al. (2018). Regulation and function of the PD-L1 checkpoint. Immunity, 48(3), 434–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mazel, M., et al. (2015). Frequent expression of PD-L1 on circulating breast cancer cells. Molecular Oncology, 9(9), 1773–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kong, D., et al. (2021). Correlation between PD-L1 expression ON CTCs and prognosis of patients with cancer: A systematic review and meta-analysis. Oncoimmunology, 10(1), 1938476.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Papadaki, M. A. (2020). Clinical Relevance of Immune Checkpoints on Circulating Tumor Cells in Breast Cancer. Cancers (Basel) 12 (2).

  105. Wang, J., et al. (2019). Fibrinogen-like protein 1 is a major Immune Inhibitory ligand of LAG-3. Cell, 176(1–2), 334–347e12.

    Article  CAS  PubMed  Google Scholar 

  106. Yan, Q., et al. (2022). Immune Checkpoint FGL1 expression of circulating Tumor cells is Associated with Poor Survival in Curatively Resected Hepatocellular Carcinoma. Frontiers in Oncology, 12, 810269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gruber, I., et al. (2013). Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Research, 33(5), 2233–2238.

    CAS  PubMed  Google Scholar 

  108. Sun, Y. F., et al. (2021). Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nature Communications, 12(1), 4091.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Palumbo, J. S., et al. (2005). Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 105(1), 178–185.

    Article  CAS  PubMed  Google Scholar 

  110. Placke, T., et al. (2012). Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Research, 72(2), 440–448.

    Article  CAS  PubMed  Google Scholar 

  111. Spiegel, A., et al. (2016). Neutrophils suppress intraluminal NK cell-mediated Tumor Cell Clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discovery, 6(6), 630–649.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, Q., et al. (2016). Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Medical Hypotheses, 87, 34–39.

    Article  CAS  PubMed  Google Scholar 

  114. Zhou, Q., et al. (2023). Circulating tumor cells PD-L1 expression detection and correlation of therapeutic efficacy of immune checkpoint inhibition in advanced non-small-cell lung cancer. Thorac Cancer, 14(5), 470–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murata, Y., et al. (2018). CD47-signal regulatory protein alpha signaling system and its application to cancer immunotherapy. Cancer Science, 109(8), 2349–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, Y., et al. (2023). Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther, 8(1), 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lian, S., et al. (2019). Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Scientific Reports, 9(1), 4532.

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  118. Mammadova-Bach, E., et al. (2015). Platelets in cancer. From basic research to therapeutic implications. Hamostaseologie, 35(4), 325–336.

    Article  CAS  PubMed  Google Scholar 

  119. Xu, Y., et al. (2020). Blockade of platelets using tumor-specific NO-Releasing nanoparticles prevents Tumor Metastasis and reverses Tumor Immunosuppression. Acs Nano, 14(8), 9780–9795.

    Article  CAS  PubMed  Google Scholar 

  120. Wang, D., et al. (2022). Role of CD155/TIGIT in Digestive cancers: Promising Cancer Target for Immunotherapy. Frontiers in Oncology, 12, 844260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu, Y., et al. (2022). Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Science Advances, 8(49), eadd3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, H., et al. (2016). NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Science Translational Medicine, 8(334), 334ra51.

    Article  PubMed  Google Scholar 

  123. Sayin, V. I., et al. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra15.

    Article  PubMed  Google Scholar 

  124. Zheng, Y., et al. (2017). Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination. Nature Communications, 8, 14344.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, Y., et al. (2021). The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 11(10), 4839–4857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tasdogan, A., et al. (2021). Redox Regulation in Cancer cells during metastasis. Cancer Discovery, 11(11), 2682–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Regmi, S., et al. (2018). Fluidic shear stress increases the anti-cancer effects of ROS-generating drugs in circulating tumor cells. Breast Cancer Research and Treatment, 172(2), 297–312.

    Article  CAS  PubMed  Google Scholar 

  128. Yang, W. S., et al. (2014). Regulation of Ferroptotic Cancer Cell death by GPX4. Cell, 156(1–2), 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Que, Z. J., et al. (2021). Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. Journal of Ethnopharmacology, 267, 113473.

    Article  CAS  PubMed  Google Scholar 

  130. Liu, A., et al. (2021). Silencing ZIC2 abrogates tumorigenesis and anoikis resistance of non-small cell lung cancer cells by inhibiting Src/FAK signaling. Mol Ther Oncolytics, 22, 195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pang, X. J., et al. (2021). Drug Discovery Targeting Focal Adhesion kinase (FAK) as a Promising Cancer Therapy. Molecules, 26, 14.

    Article  Google Scholar 

  132. Spallarossa, A. (2022). The development of FAK inhibitors: A five-year update. International Journal of Molecular Sciences 23 (12).

  133. Li, J., et al. (2016). Genetic engineering of platelets to neutralize circulating tumor cells. Journal of Controlled Release : Official Journal of the Controlled Release Society, 228, 38–47.

    Article  CAS  PubMed  Google Scholar 

  134. Schell, J. C., et al. (2014). A role for the mitochondrial pyruvate carrier as a Repressor of the Warburg effect and Colon cancer cell growth. Molecular Cell, 56(3), 400–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, T. H., et al. (2016). Cancer cells become less deformable and more invasive with activation of beta-adrenergic signaling. Journal of Cell Science, 129(24), 4563–4575.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sloan, E. K., et al. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Le, C. P., et al. (2016). Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nature Communications, 7, 10634.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Au, S. H., et al. (2016). Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A, 113(18), 4947–4952.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gkountela, S., et al. (2019). Circulating Tumor Cell Clustering shapes DNA methylation to Enable Metastasis Seeding. Cell, 176(1–2), 98–112e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Du, E., et al. (2020). The critical role of the interplays of EphrinB2/EphB4 and VEGF in the induction of angiogenesis. Molecular Biology Reports, 47(6), 4681–4690.

    Article  CAS  PubMed  Google Scholar 

  141. Bowley, T. Y. (2023). Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 15 (21).

  142. LeBleu, V. S., et al. (2014). PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Elia, I. (2017). Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nature Communications 8 (1).

Download references

Acknowledgements

Figures were created with FigDraw (www.figdraw.com).

Funding

This research was supported by the National Natural Science Foundation of China (82073059, 82103364); the Sichuan Science and Technology Program (2022YFS0204); the Post-doctor Research Project, West China Hospital (2023HXBH127).

Author information

Authors and Affiliations

Authors

Contributions

F.B made contributions to the conception and design. S.Z and H.X wrote the manuscript. Y.D and H.H completed the figures. Q.T helped to revise the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Feng Bi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

All authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Xu, H., Duan, Y. et al. Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10178-7

Keywords

Navigation