Skip to main content

Advertisement

Log in

Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used in the present review are available at clinicaltrial.gov and FDA.gov.

Abbreviations

ADA:

Anti-drug antibodies

ADCC:

Antibody-dependent cellular cytotoxicity

AMPK:

Adenosine monophosphate-activated protein kinase

c-CBL:

Casitas B-lineage lymphoma

CDR:

Complementarity determining regions

DOR:

Duration of response

EGFR:

Epidermal growth factor receptor

FDA:

The United States food and drug administration

GSK:

Glycogen synthase kinase

HCC:

Hepatocellular carcinoma

IgV:

Immunoglobulin-variable

ICB:

Immune checkpoint blockade

ITIM:

Immunoreceptor tyrosine‐based inhibition motif

ITSM:

Immunoreceptor tyrosine‐based switch motif

NEK:

Never in mitosis gene A (NIMA)-related kinase

NK:

Natural killer

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PD-L1:

Programmed cell death 1 ligand 1

PD-1:

Programmed cell death protein 1

PFS:

Progression-free survival

RTK:

Receptor tyrosine kinase

SHP:

Src homology region 2 (SH2)-containing protein tyrosine phosphatase

SPOP:

The substrate-binding adaptor speckle-type POZ protein

TEAE:

Treatment-related adverse event

USP:

Ubiquitin-specific peptidases

TAM:

Tumor-associated macrophage

TNBC:

Triple-negative breast cancer

References

  1. Sangro, B., Chan, S. L., Meyer, T., Reig, M., El-Khoueiry, A., & Galle, P. R. (2020). Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. Journal of hepatology, 72(2), 320–341. https://doi.org/10.1016/j.jhep.2019.10.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., & Iyer, A. K. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Frontiers in Pharmacology, 8, 561. https://doi.org/10.3389/fphar.2017.00561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Okusaka, T., & Ikeda, M. (2018). Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO open, 3(Suppl 1), e000455. https://doi.org/10.1136/esmoopen-2018-000455

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jabbarzadeh Kaboli, P., Shabani, S., Sharma, S., Partovi Nasr, M., Yamaguchi, H., & Hung, M.-C. (2022). Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. American Journal of Cancer Research, 12(4), 1671–1685.

    PubMed  PubMed Central  Google Scholar 

  5. Patil, N. S., Nabet, B. Y., Müller, S., Koeppen, H., Zou, W., Giltnane, J., …Shames, D. S. (2022). Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell, 40(3), 289−300.e4. https://doi.org/10.1016/j.ccell.2022.02.002

  6. Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., …Wang, S. (2022). The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Frontiers in Immunology, 13, 964442. https://doi.org/10.3389/fimmu.2022.964442

  7. Jiang, H., Ni, H., Zhang, P., Guo, X., Wu, M., Shen, H., …Liu, J. (2021). PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology, 10(1), 1943180. https://doi.org/10.1080/2162402X.2021.1943180

  8. Sanborn, R. E., Pishvaian, M. J., Callahan, M. K., Weise, A., Sikic, B. I., Rahma, O., …Keler, T. (2022). Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. Journal for Immunotherapy of Cancer, 10(8). https://doi.org/10.1136/jitc-2022-005147

  9. Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M., …Diaz, L. A. J. (2022). PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. The New England Journal of Medicine, 386(25), 2363–2376. https://doi.org/10.1056/NEJMoa2201445

  10. Huang, Q., Zheng, Y., Gao, Z., Yuan, L., Sun, Y., & Chen, H. (2021). Comparative efficacy and safety of PD-1/PD-L1 inhibitors for patients with solid tumors: A systematic review and Bayesian network meta-analysis. Journal of Cancer, 12(4), 1133–1143. https://doi.org/10.7150/jca.49325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Herbst, R. S., Soria, J.-C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., …Hodi, F. S. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. https://doi.org/10.1038/nature14011

  12. Weinstock, C., Khozin, S., Suzman, D., Zhang, L., Tang, S., Wahby, S., …Pazdur, R. (2017). U.S. food and drug administration approval summary: Atezolizumab for metastatic non-small cell lung cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23(16), 4534–4539. https://doi.org/10.1158/1078-0432.CCR-17-0540

  13. Ribeiro, R., Carvalho, M. J., Goncalves, J., & Moreira, J. N. (2022). Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Frontiers in Molecular Biosciences, 9, 903065. https://doi.org/10.3389/fmolb.2022.903065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Emens, L. A., Adams, S., Cimino-Mathews, A., Disis, M. L., Gatti-Mays, M. E., Ho, A. Y., …Litton, J. K. (2021). Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. Journal for Immunotherapy of Cancer, 9(8). https://doi.org/10.1136/jitc-2021-002597

  15. Faivre, S., Rimassa, L., & Finn, R. S. (2020). Molecular therapies for HCC: Looking outside the box. Journal of Hepatology, 72(2), 342–352. https://doi.org/10.1016/j.jhep.2019.09.010

    Article  PubMed  CAS  Google Scholar 

  16. Jin, H., Qin, S., He, J., Xiao, J., Li, Q., Mao, Y., & Zhao, L. (2022). New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: From mechanisms to clinical trials. International Journal of Biological Sciences, 18(7), 2775–2794. https://doi.org/10.7150/ijbs.70691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Feng, D., Hui, X., Shi-Chun, L., Yan-Hua, B., Li, C., Xiao-Hui, L., & Jie-Yu, Y. (2017). Initial experience of anti-PD1 therapy with nivolumab in advanced hepatocellular carcinoma. Oncotarget, 8(57), 96649–96655. https://doi.org/10.18632/oncotarget.20029

    Article  PubMed  PubMed Central  Google Scholar 

  18. El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C., …Melero, I. (2017). Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (London, England), 389(10088), 2492–2502. https://doi.org/10.1016/S0140-6736(17)31046-2

  19. Bally, A. P. R., Austin, J. W., & Boss, J. M. (2016). Genetic and epigenetic regulation of PD-1 expression. Journal of immunology (Baltimore, Md. : 1950), 196(6), 2431–2437. https://doi.org/10.4049/jimmunol.1502643

    Article  PubMed  CAS  Google Scholar 

  20. Liu, W., Jin, H., Chen, T., Zhang, G., Lai, S., & Liu, G. (2020). Investigating the role of the N-Terminal Loop of PD-1 in binding process between PD-1 and nivolumab via molecular dynamics simulation. Frontiers in Molecular Biosciences, 7, 574759. https://doi.org/10.3389/fmolb.2020.574759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., …Holak, T. A. (2015). Structure of the complex of human programmed death 1, PD-1, and Its Ligand PD-L1. Structure (London, England : 1993), 23(12), 2341–2348. https://doi.org/10.1016/j.str.2015.09.010

  22. Chen, D., Tan, S., Zhang, H., Wang, H., He, W., Shi, R., …Gao, G. F. (2019). The FG loop of PD-1 serves as a “Hotspot” for therapeutic monoclonal antibodies in tumor immune checkpoint therapy. iScience, 14, 113–124. https://doi.org/10.1016/j.isci.2019.03.017

  23. Qi, T., Fu, J., Zhang, W., Cui, W., Xu, X., Yue, J., …Tian, X. (2020). Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Translational Cancer Research, 9(11), 6811–6819. https://doi.org/10.21037/tcr-20-2118

  24. Patsoukis, N., Duke-Cohan, J. S., Chaudhri, A., Aksoylar, H.-I., Wang, Q., Council, A., …Boussiotis, V. A. (2020). Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Communications Biology, 3(1), 128. https://doi.org/10.1038/s42003-020-0845-0

  25. Lázár-Molnár, E., Yan, Q., Cao, E., Ramagopal, U., Nathenson, S. G., & Almo, S. C. (2008). Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10483–10488. https://doi.org/10.1073/pnas.0804453105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Shinohara, T., Taniwaki, M., Ishida, Y., Kawaichi, M., & Honjo, T. (1994). Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 23(3), 704–706. https://doi.org/10.1006/geno.1994.1562

    Article  PubMed  CAS  Google Scholar 

  27. Zhao, Q., Guo, J., Zhao, Y., Shen, J., Kaboli, P. J., Xiang, S., …Xiao, Z. (2020). Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics, 12(24), 2155–2171. https://doi.org/10.2217/epi-2020-0093

  28. Li, D., Xiang, S., Shen, J., Xiao, M., Zhao, Y., Wu, X., …Wen, Q. (2020). Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets. International Journal of Biological Sciences, 16(4), 568–582. https://doi.org/10.7150/ijbs.39769

  29. Wang, H., Yao, H., Li, C., Shi, H., Lan, J., Li, Z., …Xu, J. (2019). HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nature Chemical Biology, 15(1), 42–50. https://doi.org/10.1038/s41589-018-0161-x

  30. Chen, Y., Liu, P., Gao, F., Cheng, H., Qi, J., & Gao, G. F. (2010). A dimeric structure of PD-L1: Functional units or evolutionary relics? Protein Cell, 1(2), 153–160. https://doi.org/10.1007/s13238-010-0022-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Okazaki, T., & Honjo, T. (2006). The PD-1-PD-L pathway in immunological tolerance. Trends in Immunology, 27(4), 195–201. https://doi.org/10.1016/j.it.2006.02.001

    Article  PubMed  CAS  Google Scholar 

  32. Philips, E. A., Garcia-España, A., Tocheva, A. S., Ahearn, I. M., Adam, K. R., Pan, R., …Kong, X.-P. (2020). The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. The Journal of Biological Chemistry, 295(14), 4372–4380. https://doi.org/10.1074/jbc.AC119.011747

  33. Wang, S., Bajorath, J., Flies, D. B., Dong, H., Honjo, T., & Chen, L. (2003). Molecular modeling and functional mapping of B7–H1 and B7-DC uncouple costimulatory function from PD-1 interaction. The Journal of Experimental Medicine, 197(9), 1083–1091. https://doi.org/10.1084/jem.20021752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gainza, P., Wehrle, S., VanHall-Beauvais, A., Marchand, A., Scheck, A., Harteveld, Z., …Correia, B. E. (2023). De novo design of protein interactions with learned surface fingerprints. Nature, 617(7959), 176–184. https://doi.org/10.1038/s41586-023-05993-x

  35. Lin, D. Y.-W., Tanaka, Y., Iwasaki, M., Gittis, A. G., Su, H.-P., Mikami, B., …Garboczi, D. N. (2008). The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3011–3016. https://doi.org/10.1073/pnas.0712278105

  36. Almahmoud, S., & Zhong, H. A. (2019). Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184654

  37. Lee, H. T., Lee, J. Y., Lim, H., Lee, S. H., Moon, Y. J., Pyo, H. J., …Heo, Y.-S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. https://doi.org/10.1038/s41598-017-06002-8

  38. Tan, S., Zhang, H., Chai, Y., Song, H., Tong, Z., Wang, Q., …Yan, J. (2017). An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 8, 14369. https://doi.org/10.1038/ncomms14369

  39. Hao, G., Wesolowski, J. S., Jiang, X., Lauder, S., & Sood, V. D. (2015). Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches. Journal of Molecular Recognition: JMR, 28(4), 269–276. https://doi.org/10.1002/jmr.2418

    Article  PubMed  CAS  Google Scholar 

  40. Magarkar, A., Schnapp, G., Apel, A.-K., Seeliger, D., & Tautermann, C. S. (2019). Enhancing drug residence time by shielding of intra-protein hydrogen bonds: A case study on CCR2 antagonists. ACS Medicinal Chemistry Letters, 10(3), 324–328. https://doi.org/10.1021/acsmedchemlett.8b00590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., …Heo, Y.-S. (2016). Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nature Communications, 7, 13354. https://doi.org/10.1038/ncomms13354

  42. Bangarh, R., Khatana, C., Kaur, S., Sharma, A., Kaushal, A., Siwal, S. S., …Saini, A. K. (2023). Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnology Advances, 66, 108149. https://doi.org/10.1016/j.biotechadv.2023.108149

  43. Hu, M., Zhang, R., Yang, J., Zhao, C., Liu, W., Huang, Y., …Tang, J. (2023). The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death & Disease, 14(3), 222. https://doi.org/10.1038/s41419-023-05733-z

  44. Liu, Y., Lan, L., Li, Y., Lu, J., He, L., Deng, Y., …Lu, B. (2022). N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biology, 54, 102366. https://doi.org/10.1016/j.redox.2022.102366

  45. Morales-Betanzos, C. A., Lee, H., Gonzalez Ericsson, P. I., Balko, J. M., Johnson, D. B., Zimmerman, L. J., & Liebler, D. C. (2017). Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Molecular & Cellular Proteomics: MCP, 16(10), 1705–1717. https://doi.org/10.1074/mcp.RA117.000037

    Article  PubMed Central  CAS  Google Scholar 

  46. D’Arrigo, P., Russo, M., Rea, A., Tufano, M., Guadagno, E., DelBasso De Caro, M. L., …Romano, S. (2017). A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget, 8(40), 68291–68304. https://doi.org/10.18632/oncotarget.19309

  47. Maher, C. M., Thomas, J. D., Haas, D. A., Longen, C. G., Oyer, H. M., Tong, J. Y., & Kim, F. J. (2018). Small-Molecule Sigma1 modulator induces autophagic degradation of PD-L1. Molecular Cancer Research: MCR, 16(2), 243–255. https://doi.org/10.1158/1541-7786.MCR-17-0166

    Article  PubMed  CAS  Google Scholar 

  48. Duan, X., Xie, Y., Yu, J., Hu, X., Liu, Z., Li, N., …Wang, Y. (2022). MCT4/Lactate promotes PD-L1 glycosylation in triple-negative breast cancer cells. Journal of Oncology, 2022, 3659714. https://doi.org/10.1155/2022/3659714

  49. Li, C.-W., Lim, S.-O., Xia, W., Lee, H.-H., Chan, L.-C., Kuo, C.-W., …Hung, M.-C. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632. https://doi.org/10.1038/ncomms12632

  50. Ou-Yang, F., Li, C.-L., Chen, C.-C., Shen, Y.-C., Moi, S.-H., Luo, C.-W., …Hung, M.-C. (2022). De-glycosylated membrane PD-L1 in tumor tissues as a biomarker for responsiveness to atezolizumab (Tecentriq) in advanced breast cancer patients. American Journal of Cancer Research, 12(1), 123–137

  51. Goletz, C., Lischke, T., Harnack, U., Schiele, P., Danielczyk, A., Rühmann, J., & Goletz, S. (2018). Glyco-engineered anti-human programmed death-Ligand 1 antibody mediates stronger CD8 T cell activation than its normal glycosylated and non-glycosylated counterparts. Frontiers in Immunology, 9, 1614. https://doi.org/10.3389/fimmu.2018.01614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Cohen Saban, N., Yalin, A., Landsberger, T., Salomon, R., Alva, A., Feferman, T., …Dahan, R. (2023). Fc glycoengineering of a PD-L1 antibody harnesses Fcγ receptors for increased antitumor efficacy. Science Immunology, 8(81), eadd8005. https://doi.org/10.1126/sciimmunol.add8005

  53. Okada, M., Chikuma, S., Kondo, T., Hibino, S., Machiyama, H., Yokosuka, T., …Yoshimura, A. (2017). Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Reports, 20(5), 1017–1028. https://doi.org/10.1016/j.celrep.2017.07.027

  54. Sun, L., Li, C.-W., Chung, E. M., Yang, R., Kim, Y.-S., Park, A. H., …Hung, M.-C. (2020). Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Research, 80(11), 2298–2310. https://doi.org/10.1158/0008-5472.CAN-19-3133

  55. Zhou, S., Zhu, J., Xu, J., Gu, B., Zhao, Q., Luo, C., …Cheng, X. (2022). Anti-tumour potential of PD-L1/PD-1 post-translational modifications. Immunology, 167(4), 471–481. https://doi.org/10.1111/imm.13573

  56. Wang, M., Wang, J., Wang, R., Jiao, S., Wang, S., Zhang, J., & Zhang, M. (2019). Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Communications Biology, 2, 392. https://doi.org/10.1038/s42003-019-0642-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bristol Myers Squibb Co. (2014). Nivolumab (Opdivo). drugs@FDA. Retrieved from http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125554Orig1s000PharmR.pdf

  58. Huang, Z., Pang, X., Zhong, T., Qu, T., Chen, N., Ma, S., …Li, B. (2022). Penpulimab, an Fc-Engineered IgG1 Anti-PD-1 antibody, with improved efficacy and low incidence of immune-related adverse events. Frontiers in Immunology, 13, 924542. https://doi.org/10.3389/fimmu.2022.924542

  59. Cha, J.-H., Yang, W.-H., Xia, W., Wei, Y., Chan, L.-C., Lim, S.-O., …Hung, M.-C. (2018). Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Molecular Cell, 71(4), 606–620.e7. https://doi.org/10.1016/j.molcel.2018.07.030

  60. Dai, X., Bu, X., Gao, Y., Guo, J., Hu, J., Jiang, C., …Wei, W. (2021). Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Molecular Cell, 81(11), 2317–2331.e6. https://doi.org/10.1016/j.molcel.2021.03.037

  61. Mezzadra, R., Sun, C., Jae, L. T., Gomez-Eerland, R., deVries, E., Wu, W., …Schumacher, T. N. M. (2017). Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature, 549(7670), 106–110. https://doi.org/10.1038/nature23669

  62. Chan, L.-C., Li, C.-W., Xia, W., Hsu, J.-M., Lee, H.-H., Cha, J.-H., …Hung, M.-C. (2019). IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. The Journal of Clinical Investigation, 129(8), 3324–3338. https://doi.org/10.1172/JCI126022

  63. Zhang, X., Huang, X., Xu, J., Li, E., Lao, M., Tang, T., …Liang, T. (2021). NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nature Communications, 12(1), 4536. https://doi.org/10.1038/s41467-021-24769-3

  64. Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M., & Saito, T. (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. The Journal of experimental medicine, 209(6), 1201–1217. https://doi.org/10.1084/jem.20112741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hui, E., Cheung, J., Zhu, J., Su, X., Taylor, M. J., Wallweber, H. A., …Vale, R. D. (2017). T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science, 4(March), eaaf1292. https://doi.org/10.1126/science.aaf1292

  66. Fernandes, R. A., Su, L., Nishiga, Y., Ren, J., Bhuiyan, A. M., Cheng, N., …Garcia, K. C. (2020). Immune receptor inhibition through enforced phosphatase recruitment. Nature, 586(7831), 779–784. https://doi.org/10.1038/s41586-020-2851-2

  67. Marasco, M., Berteotti, A., Weyershaeuser, J., Thorausch, N., Sikorska, J., Krausze, J., …Carlomagno, T. (2020). Molecular mechanism of SHP2 activation by PD-1 stimulation. Science Advances, 6(5), eaay4458. https://doi.org/10.1126/sciadv.aay4458

  68. Fan, Z., Tian, Y., Chen, Z., Liu, L., Zhou, Q., He, J., …Chen, L. (2020). Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Molecular Medicine, 12(6), e11571. https://doi.org/10.15252/emmm.201911571

  69. Bu, X., Juneja, V. R., Reynolds, C. G., Mahoney, K. M., Bu, M. T., McGuire, K. A., …Freeman, G. J. (2021). Monitoring PD-1 phosphorylation to evaluate PD-1 signaling during antitumor immune responses. Cancer Immunology Research, 9(12), 1465–1475. https://doi.org/10.1158/2326-6066.CIR-21-0493

  70. Dai, X., Gao, Y., & Wei, W. (2022). Post-translational regulations of PD-L1 and PD-1: Mechanisms and opportunities for combined immunotherapy. Seminars in Cancer Biology, 85, 246–252. https://doi.org/10.1016/j.semcancer.2021.04.002

    Article  PubMed  CAS  Google Scholar 

  71. Yang, Z., Wang, Y., Liu, S., Deng, W., Lomeli, S. H., Moriceau, G., …Lo, R. S. (2022). Enhancing PD-L1 degradation by ITCH during MAPK inhibitor therapy suppresses acquired resistance. Cancer Discovery, 12(8), 1942–1959. https://doi.org/10.1158/2159-8290.CD-21-1463

  72. Wu, Y., Zhang, C., Liu, X., He, Z., Shan, B., Zeng, Q., …Xia, H. (2021). ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 12(1), 2346. https://doi.org/10.1038/s41467-021-22467-8

  73. Qian, G., Guo, J., Vallega, K. A., Hu, C., Chen, Z., Deng, Y., …Sun, S.-Y. (2021). Membrane-associated RING-CH 8 functions as a Novel PD-L1 E3 ligase to mediate PD-L1 degradation induced by EGFR inhibitors. Molecular Cancer Research : MCR, 19(10), 1622–1634. https://doi.org/10.1158/1541-7786.MCR-21-0147

  74. Gao, K., Shi, Q., Gu, Y., Yang, W., He, Y., Lv, Z., …Wan, X. (2023). SPOP mutations promote tumor immune escape in endometrial cancer via the IRF1-PD-L1 axis. Cell Death and Differentiation, 30(2), 475–487. https://doi.org/10.1038/s41418-022-01097-7

  75. Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N. T., …Wei, W. (2018). Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature, 553(7686), 91–95. https://doi.org/10.1038/nature25015

  76. Gao, L., Xia, L., Ji, W., Zhang, Y., Xia, W., & Lu, S. (2021). Knockdown of CDK5 down-regulates PD-L1 via the ubiquitination-proteasome pathway and improves antitumor immunity in lung adenocarcinoma. Translational Oncology, 14(9), 101148. https://doi.org/10.1016/j.tranon.2021.101148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. De, S., Holvey-Bates, E. G., Mahen, K., Willard, B., &Stark, G. R. (2021). The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 118(47). https://doi.org/10.1073/pnas.2112674118

  78. Dorand, R. D., Nthale, J., Myers, J. T., Barkauskas, D. S., Avril, S., Chirieleison, S. M., …Petrosiute, A. (2016). Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science, 353(6297), 399–403. https://doi.org/10.1126/science.aae0477

  79. Meng, X., Liu, X., Guo, X., Jiang, S., Chen, T., Hu, Z., …Xu, C. (2018). FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature, 564(7734), 130–135. https://doi.org/10.1038/s41586-018-0756-0

  80. Zhong, B., Zheng, J., Wen, H., Liao, X., Chen, X., Rao, Y., & Yuan, P. (2022). NEDD4L suppresses PD-L1 expression and enhances anti-tumor immune response in A549 cells. Genes & Genomics, 44(9), 1071–1079. https://doi.org/10.1007/s13258-022-01238-9

    Article  CAS  Google Scholar 

  81. Zhou, X. A., Zhou, J., Zhao, L., Yu, G., Zhan, J., Shi, C., …Wang, J. (2020). KLHL22 maintains PD-1 homeostasis and prevents excessive T cell suppression. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28239–28250. https://doi.org/10.1073/pnas.2004570117

  82. Sharma, N., Ponce, M., Kaul, S., Pan, Z., Berry, D. M., Eiwegger, T., & McGlade, C. J. (2019). SLAP Is a negative regulator of FcεRI receptor-mediated signaling and allergic response. Frontiers in Immunology, 10, 1020. https://doi.org/10.3389/fimmu.2019.01020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tang, R., Langdon, W. Y., & Zhang, J. (2022). Negative regulation of receptor tyrosine kinases by ubiquitination: Key roles of the Cbl family of E3 ubiquitin ligases. Frontiers in Endocrinology, 13, 971162. https://doi.org/10.3389/fendo.2022.971162

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lyle, C., Richards, S., Yasuda, K., Napoleon, M. A., Walker, J., Arinze, N., …Chitalia, V. C. (2019). c-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth. Scientific Reports, 9(1), 20257. https://doi.org/10.1038/s41598-019-56208-1

  85. Qin, R., Zhao, C., Wang, C.-J., Xu, W., Zhao, J.-Y., Lin, Y., …Huang, Y. (2021). Tryptophan potentiates CD8(+) T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. Journal for Immunotherapy of Cancer, 9(7). https://doi.org/10.1136/jitc-2021-002840

  86. Ichikawa, S., Flaxman, H. A., Xu, W., Vallavoju, N., Lloyd, H. C., Wang, B., …Woo, C. M. (2022). The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature, 610(7933), 775–782. https://doi.org/10.1038/s41586-022-05333-5

  87. Ioannou, N., Hagner, P. R., Stokes, M., Gandhi, A. K., Apollonio, B., Fanous, M., …Ramsay, A. G. (2021). Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood, 137(2), 216–231. https://doi.org/10.1182/blood.2020006073

  88. Zou, J., Xia, H., Zhang, C., Xu, H., Tang, Q., Zhu, G., …Bi, F. (2021). Casp8 acts through A20 to inhibit PD-L1 expression: The mechanism and its implication in immunotherapy. Cancer Science, 112(7), 2664–2678. https://doi.org/10.1111/cas.14932

  89. Shi, C., Wang, Y., Wu, M., Chen, Y., Liu, F., Shen, Z., …Lin, A. (2022). Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nature Communications, 13(1), 6951. https://doi.org/10.1038/s41467-022-34346-x

  90. Burr, M. L., Sparbier, C. E., Chan, Y.-C., Williamson, J. C., Woods, K., Beavis, P. A., …Dawson, M. A. (2017). CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 549(7670), 101–105. https://doi.org/10.1038/nature23643

  91. Ho, P., Melms, J. C., Rogava, M., Frangieh, C. J., Poźniak, J., Shah, S. B., …Izar, B. (2023). The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell, 41(7), 1207–1221.e12. https://doi.org/10.1016/j.ccell.2023.05.014

  92. Chen, S., Liu, Y., &Zhou, H. (2021). Advances in the development ubiquitin-specific peptidase (USP) inhibitors. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094546

  93. Wang, Y., Sun, Q., Mu, N., Sun, X., Wang, Y., Fan, S., …Liu, X. (2020). The deubiquitinase USP22 regulates PD-L1 degradation in human cancer cells. Cell Communication and Signaling : CCS, 18(1), 112. https://doi.org/10.1186/s12964-020-00612-y

  94. Lim, S.-O., Li, C.-W., Xia, W., Cha, J.-H., Chan, L.-C., Wu, Y., …Hung, M.-C. (2016). Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 30(6), 925–939. https://doi.org/10.1016/j.ccell.2016.10.010

  95. Jingjing, W., Wenzheng, G., Donghua, W., Guangyu, H., Aiping, Z., & Wenjuan, W. (2018). Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Medicine, 7(8), 4004–4011. https://doi.org/10.1002/cam4.1675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pan, J., Qiao, Y., Chen, C., Zang, H., Zhang, X., Qi, F., …Chen, G. (2021). USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1. Cell Death & Disease, 12(11), 1051. https://doi.org/10.1038/s41419-021-04356-6

  97. Yang, S., Yan, H., Wu, Y., Shan, B., Zhou, D., Liu, X., …Xia, H. (2021). Deubiquitination and Stabilization of PD-L1 by USP21. American Journal of Translational Research, 13(11), 12763–12774.

  98. Li, B., & Wang, B. (2022). USP7 enables immune escape of glioma cells by regulating PD-L1 expression. Immunological Investigations, 51(7), 1921–1937. https://doi.org/10.1080/08820139.2022.2083972

    Article  PubMed  CAS  Google Scholar 

  99. Wang, Z., Kang, W., Li, O., Qi, F., Wang, J., You, Y., …Liu, H.-M. (2021). Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharmaceutica Sinica. B, 11(3), 694–707. https://doi.org/10.1016/j.apsb.2020.11.005

  100. Zhu, D., Xu, R., Huang, X., Tang, Z., Tian, Y., Zhang, J., & Zheng, X. (2021). Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death and Differentiation, 28(6), 1773–1789. https://doi.org/10.1038/s41418-020-00700-z

    Article  PubMed  CAS  Google Scholar 

  101. Saung, M. T., Pelosof, L., Casak, S., Donoghue, M., Lemery, S., Yuan, M., …Fashoyin-Aje, L. (2021). FDA approval summary: Nivolumab plus Ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with Sorafenib. The oncologist, 26(9), 797–806. https://doi.org/10.1002/onco.13819

  102. Sharmni Vishnu, K., Win, T. T., Aye, S. N., & Basavaraj, A. K. (2022). Combined atezolizumab and nab-paclitaxel in the treatment of triple negative breast cancer: A meta-analysis on their efficacy and safety. BMC Cancer, 22(1), 1139. https://doi.org/10.1186/s12885-022-10225-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Li, X., Warren, S., Pelekanou, V., Wali, V., Cesano, A., Liu, M., …Pusztai, L. (2019). Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial. Journal for Immunotherapy of Cancer, 7(1), 88. https://doi.org/10.1186/s40425-019-0563-7

  104. Foulds, G. A., Vadakekolathu, J., Abdel-Fatah, T. M. A., Nagarajan, D., Reeder, S., Johnson, C., …McArdle, S. E. B. (2018). Immune-phenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: Identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Frontiers in Immunology, 9, 2028. https://doi.org/10.3389/fimmu.2018.02028

  105. Axelrod, M. L., Nixon, M. J., Gonzalez-Ericsson, P. I., Bergman, R. E., Pilkinton, M. A., McDonnell, W. J., …Balko, J. M. (2020). Changes in peripheral and local tumor immunity after neoadjuvant chemotherapy reshape clinical outcomes in patients with breast cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 26(21), 5668–5681. https://doi.org/10.1158/1078-0432.CCR-19-3685

  106. Lu, Y., Zhao, Q., Liao, J.-Y., Song, E., Xia, Q., Pan, J., …Su, S. (2020). Complement signals determine opposite effects of B cells in chemotherapy-induced immunity. Cell, 180(6), 1081–1097.e24. https://doi.org/10.1016/j.cell.2020.02.015

  107. Shen, M., Wang, J., & Ren, X. (2018). New insights into tumor-infiltrating B lymphocytes in breast cancer: Clinical impacts and regulatory mechanisms. Frontiers in Immunology, 9, 470. https://doi.org/10.3389/fimmu.2018.00470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schumacher, T. N., & Thommen, D. S. (2022). Tertiary lymphoid structures in cancer. Science (New York, N.Y.), 375(6576), eabf9419. https://doi.org/10.1126/science.abf9419

    Article  PubMed  CAS  Google Scholar 

  109. Franzoi, M. A., Romano, E., & Piccart, M. (2021). Immunotherapy for early breast cancer: Too soon, too superficial, or just right? Annals of Oncology: Official journal of the European Society for Medical Oncology, 32(3), 323–336. https://doi.org/10.1016/j.annonc.2020.11.022

    Article  PubMed  CAS  Google Scholar 

  110. Wang, B., Liu, J., Han, Y., Deng, Y., Li, J., & Jiang, Y. (2022). The presence of tertiary lymphoid structures provides new insight into the clinicopathological features and prognosis of patients with breast cancer. Frontiers in Immunology, 13, 868155. https://doi.org/10.3389/fimmu.2022.868155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., …Jönsson, G. (2020). Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 577(7791), 561–565. https://doi.org/10.1038/s41586-019-1914-8

  112. Wang, Q., Sun, K., Liu, R., Song, Y., Lv, Y., Bi, P., …Tang, S. (2023). Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clinical and Translational Medicine, 13(8), e1346. https://doi.org/10.1002/ctm2.1346

  113. Sui, Q., Zhang, X., Chen, C., Tang, J., Yu, J., Li, W., …Ding, P.-R. (2022). Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer. Nature Communications, 13(1), 7316. https://doi.org/10.1038/s41467-022-35096-6

  114. Liu, X., Xie, P., Hao, N., Zhang, M., Liu, Y., Liu, P., …Zhang, H. (2021). HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/β-catenin pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 118(44). https://doi.org/10.1073/pnas.2109144118

  115. Schütz, F., Stefanovic, S., Mayer, L., vonAu, A., Domschke, C., & Sohn, C. (2017). PD-1/PD-L1 pathway in breast cancer. Oncology research and treatment, 40(5), 294–297. https://doi.org/10.1159/000464353

    Article  PubMed  CAS  Google Scholar 

  116. Roux, C., Jafari, S. M., Shinde, R., Duncan, G., Cescon, D. W., Silvester, J., …Gorrini, C. (2019). Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4326–4335. https://doi.org/10.1073/pnas.1819473116

  117. Tan, Z., Chiu, M. S., Yang, X., Yue, M., Cheung, T. T., Zhou, D., …Chen, Z. (2023). Isoformic PD-1-mediated immunosuppression underlies resistance to PD-1 blockade in hepatocellular carcinoma patients. Gut, 72(8), 1568–1580. https://doi.org/10.1136/gutjnl-2022-327133

  118. Li, S., Yu, J., Huber, A., Kryczek, I., Wang, Z., Jiang, L., …Zou, W. (2022). Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Reports, 39(1), 110609. https://doi.org/10.1016/j.celrep.2022.110609

  119. Gao, J., Liang, Y., & Wang, L. (2022). Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Frontiers in Immunology, 13, 888713. https://doi.org/10.3389/fimmu.2022.888713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yamaguchi, Y., Gibson, J., Ou, K., Lopez, L. S., Ng, R. H., Leggett, N., …Priceman, S. J. (2022). PD-L1 blockade restores CAR T cell activity through IFN-γ-regulation of CD163+ M2 macrophages. Journal for Immunotherapy of Cancer, 10(6). https://doi.org/10.1136/jitc-2021-004400

  121. Liu, Y., Xun, Z., Ma, K., Liang, S., Li, X., Zhou, S., …Liu, L. (2023). Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. Journal of Hepatology, 78(4), 770–782. https://doi.org/10.1016/j.jhep.2023.01.011

  122. Stanczak, M. A., Rodrigues Mantuano, N., Kirchhammer, N., Sanin, D. E., Jacob, F., Coelho, R., …Läubli, H. (2022). Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Science Translational Medicine, 14(669), eabj1270. https://doi.org/10.1126/scitranslmed.abj1270

  123. ElMeskini, R., Atkinson, D., Kulaga, A., Abdelmaksoud, A., Gumprecht, M., Pate, N., …Weaver Ohler, Z. (2021). Distinct biomarker profiles and TCR sequence diversity characterize the response to PD-L1 blockade in a mouse melanoma model. Molecular Cancer Research : MCR, 19(8), 1422–1436. https://doi.org/10.1158/1541-7786.MCR-20-0881

  124. Fehlings, M., Jhunjhunwala, S., Kowanetz, M., O’Gorman, W. E., Hegde, P. S., Sumatoh, H., …Yadav, M. (2019). Late-differentiated effector neoantigen-specific CD8+ T cells are enriched in peripheral blood of non-small cell lung carcinoma patients responding to atezolizumab treatment. Journal for Immunotherapy of Cancer, 7(1), 249. https://doi.org/10.1186/s40425-019-0695-9

  125. Fehlings, M., Kim, L., Guan, X., Yuen, K., Tafazzol, A., Sanjabi, S., …Yadav, M. (2022). Single-cell analysis reveals clonally expanded tumor-associated CD57(+) CD8 T cells are enriched in the periphery of patients with metastatic urothelial cancer responding to PD-L1 blockade. Journal for Immunotherapy of Cancer, 10(8). https://doi.org/10.1136/jitc-2022-004759

  126. Fameli, A., Nardone, V., Shekarkar Azgomi, M., Bianco, G., Gandolfo, C., Oliva, B. M., …Correale, P. (2022). PD-1/PD-L1 immune-checkpoint blockade induces immune effector cell modulation in metastatic non-small cell lung cancer patients: A single-cell flow cytometry approach. Frontiers in Oncology, 12, 911579. https://doi.org/10.3389/fonc.2022.911579

  127. Park, J.-E., Kim, S.-E., Keam, B., Park, H.-R., Kim, S., Kim, M., …Heo, D. S. (2020). Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines. Journal for Immunotherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2020-000873

  128. Gopal, S., Kwon, S.-J., Ku, B., Lee, D. W., Kim, J., & Dordick, J. S. (2021). 3D tumor spheroid microarray for high-throughput, high-content natural killer cell-mediated cytotoxicity. Communications Biology, 4(1), 893. https://doi.org/10.1038/s42003-021-02417-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Hirosaki, H., Maeda, Y., & Takeyoshi, M. (2023). Establishment of cell-based assay system for evaluating cytotoxic activity modulated by the blockade of PD-1 and PD-L1 interactions with a therapeutic antibody. Immunological Investigations, 52(3), 332–342. https://doi.org/10.1080/08820139.2023.2174442

    Article  PubMed  CAS  Google Scholar 

  130. Hamdan, F., Ylösmäki, E., Chiaro, J., Giannoula, Y., Long, M., Fusciello, M., …Cerullo, V. (2021). Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. Journal for Immunotherapy of Cancer, 9(8). https://doi.org/10.1136/jitc-2021-003000

  131. Liu, Y., Zugazagoitia, J., Ahmed, F. S., Henick, B. S., Gettinger, S. N., Herbst, R. S., …Rimm, D. L. (2020). Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 26(4), 970–977. https://doi.org/10.1158/1078-0432.CCR-19-1040

  132. Lin, H., Fu, L., Li, P., Zhu, J., Xu, Q., Wang, Y., …Cao, J. (2023). Fatty acids metabolism affects the therapeutic effect of anti-PD-1/PD-L1 in tumor immune microenvironment in clear cell renal cell carcinoma. Journal of Translational Medicine, 21(1), 343. https://doi.org/10.1186/s12967-023-04161-z

  133. Xu, P., Yang, J. C., Chen, B., Nip, C., VanDyke, J. E., Zhang, X., …Liu, C. (2023). Androgen receptor blockade resistance with enzalutamide in prostate cancer results in immunosuppressive alterations in the tumor immune microenvironment. Journal for Immunotherapy of Cancer, 11(5). https://doi.org/10.1136/jitc-2022-006581

  134. Yoshida, T., Ohe, C., Ito, K., Takada, H., Saito, R., Kita, Y., …Kobayashi, T. (2022). Clinical and molecular correlates of response to immune checkpoint blockade in urothelial carcinoma with liver metastasis. Cancer Immunology, Immunotherapy : CII, 71(11), 2815–2828. https://doi.org/10.1007/s00262-022-03204-6

  135. Emens, L. A., Molinero, L., Loi, S., Rugo, H. S., Schneeweiss, A., Diéras, V., …Schmid, P. (2021). Atezolizumab and nab-Paclitaxel in advanced triple-negative breast cancer: Biomarker evaluation of the IMpassion130 study. Journal of the National Cancer Institute, 113(8), 1005–1016. https://doi.org/10.1093/jnci/djab004

  136. Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H., …Emens, L. A. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. The New England Journal of Medicine, 379(22), 2108–2121. https://doi.org/10.1056/NEJMoa1809615

  137. Emens, L. A., Adams, S., Barrios, C. H., Diéras, V., Iwata, H., Loi, S., …Schmid, P. (2021). First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 32(8), 983–993. https://doi.org/10.1016/j.annonc.2021.05.355

  138. Schmid, P., Rugo, H. S., Adams, S., Schneeweiss, A., Barrios, C. H., Iwata, H., …Emens, L. A. (2020). Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. Oncology, 21(1), 44–59. https://doi.org/10.1016/S1470-2045(19)30689-8

  139. Cortés, J., André, F., Gonçalves, A., Kümmel, S., Martín, M., Schmid, P., …Dent, R. (2019). IMpassion132 Phase III trial: atezolizumab and chemotherapy in early relapsing metastatic triple-negative breast cancer. Future Oncology, 15(17), 1951–1961. https://doi.org/10.2217/fon-2019-0059

  140. Miles, D., Gligorov, J., André, F., Cameron, D., Schneeweiss, A., Barrios, C., …O’Shaughnessy, J. (2021). Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 32(8), 994–1004. https://doi.org/10.1016/j.annonc.2021.05.801

  141. Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., vonPawel, J., …Gandara, D. R. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet (London, England), 389(10066), 255–265. https://doi.org/10.1016/S0140-6736(16)32517-X

  142. vonPawel, J., Bordoni, R., Satouchi, M., Fehrenbacher, L., Cobo, M., Han, J. Y., …Park, K. (2019). Long-term survival in patients with advanced non-small-cell lung cancer treated with atezolizumab versus docetaxel: Results from the randomised phase III OAK study. European Journal of Cancer (Oxford, England : 1990), 107, 124–132. https://doi.org/10.1016/j.ejca.2018.11.020

  143. Socinski, M. A., Jotte, R. M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., …Reck, M. (2018). Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. The New England Journal of Medicine, 378(24), 2288–2301. https://doi.org/10.1056/NEJMoa1716948

  144. Nogami, N., Barlesi, F., Socinski, M. A., Reck, M., Thomas, C. A., Cappuzzo, F., …Nishio, M. (2022). IMpower150 final exploratory analyses for Atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 17(2), 309–323. https://doi.org/10.1016/j.jtho.2021.09.014

  145. Kudo, M., Matilla, A., Santoro, A., Melero, I., Gracián, A. C., Acosta-Rivera, M., …Sangro, B. (2021). CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. Journal of Hepatology, 75(3), 600–609. https://doi.org/10.1016/j.jhep.2021.04.047

  146. Yau, T., Hsu, C., Kim, T.-Y., Choo, S.-P., Kang, Y.-K., Hou, M.-M., …Kudo, M. (2019). Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. Journal of Hepatology, 71(3), 543–552. https://doi.org/10.1016/j.jhep.2019.05.014

  147. Sové, R. J., Verma, B. K., Wang, H., Ho, W. J., Yarchoan, M., & Popel, A. S. (2022). Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. Journal for Immunotherapy of Cancer, 10(11). https://doi.org/10.1136/jitc-2022-005414

  148. Yau, T., Zagonel, V., Santoro, A., Acosta-Rivera, M., Choo, S. P., Matilla, A., …Piscaglia, F. (2023). Nivolumab plus Cabozantinib with or without ipilimumab for advanced hepatocellular carcinoma: Results from cohort 6 of the CheckMate 040 trial. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 41(9), 1747–1757. https://doi.org/10.1200/JCO.22.00972

  149. Llovet, J. M., Castet, F., Heikenwalder, M., Maini, M. K., Mazzaferro, V., Pinato, D. J., …Finn, R. S. (2022). Immunotherapies for hepatocellular carcinoma. Nature Reviews. Clinical Oncology, 19(3), 151–172. https://doi.org/10.1038/s41571-021-00573-2

  150. Aoki, H., Matsumoto, N., Takahashi, H., Honda, M., Kaneko, T., Arima, S., …Miura, K. (2021). Immune checkpoint inhibitor as a therapeutic choice for double cancer: A case series. Anticancer Research, 41(12), 6225–6230. https://doi.org/10.21873/anticanres.15442

  151. Sangro, B., Melero, I., Wadhawan, S., Finn, R. S., Abou-Alfa, G. K., Cheng, A.-L., …El-Khoueiry, A. (2020). Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. Journal of Hepatology, 73(6), 1460–1469. https://doi.org/10.1016/j.jhep.2020.07.026

  152. Yau, T., Kang, Y.-K., Kim, T.-Y., El-Khoueiry, A. B., Santoro, A., Sangro, B., …Hsu, C. (2020). Efficacy and safety of Nivolumab plus Ipilimumab in patients with advanced hepatocellular carcinoma previously treated with Sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncology, 6(11), e204564. https://doi.org/10.1001/jamaoncol.2020.4564

  153. Yau, T., Park, J.-W., Finn, R. S., Cheng, A.-L., Mathurin, P., Edeline, J., …Sangro, B. (2022). Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. The Lancet. Oncology, 23(1), 77–90. https://doi.org/10.1016/S1470-2045(21)00604-5

  154. Marcum, Z. A., VandeGriend, J. P., & Linnebur, S. A. (2012). FDA drug safety communications: A narrative review and clinical considerations for older adults. The American Journal of Geriatric Pharmacotherapy, 10(4), 264–271. https://doi.org/10.1016/j.amjopharm.2012.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Davda, J., Declerck, P., Hu-Lieskovan, S., Hickling, T. P., Jacobs, I. A., Chou, J., …Kraynov, E. (2019). Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. Journal for Immunotherapy of Cancer, 7(1), 105. https://doi.org/10.1186/s40425-019-0586-0

  156. Agrawal, S., Statkevich, P., Bajaj, G., Feng, Y., Saeger, S., Desai, D. D., …Gupta, M. (2017). Evaluation of immunogenicity of Nivolumab monotherapy and its clinical relevance in patients with metastatic solid tumors. Journal of Clinical Pharmacology, 57(3), 394–400. https://doi.org/10.1002/jcph.818

  157. Wu, B., Sternheim, N., Agarwal, P., Suchomel, J., Vadhavkar, S., Bruno, R., …Quarmby, V. (2022). Evaluation of atezolizumab immunogenicity: Clinical pharmacology (part 1). Clinical and Translational Science, 15(1), 130–140. https://doi.org/10.1111/cts.13127

  158. Hammer, C., Ruppel, J., Kamen, L., Hunkapiller, J., Mellman, I., & Quarmby, V. (2022). Allelic variation in HLA-DRB1 is associated with development of antidrug antibodies in cancer patients treated with atezolizumab that are neutralizing in vitro. Clinical and Translational Science, 15(6), 1393–1399. https://doi.org/10.1111/cts.13264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Li, M., Zhao, R., Chen, J., Tian, W., Xia, C., Liu, X., …Sun, L. (2021). Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Scientific Reports, 11(1), 5774. https://doi.org/10.1038/s41598-021-85329-9

  160. Ha, J. Y., Chun, K.-J., Ko, S., Lee, H. W., Hwang, O. K., Lim, C. S., …Jung, S. T. (2023). Glycan-controlled human PD-1 variants displaying broad-spectrum high binding to PD-1 ligands potentiate T cell. Molecular Pharmaceutics, 20(4), 2170–2180. https://doi.org/10.1021/acs.molpharmaceut.3c00003

  161. Xenaki, K. T., Oliveira, S., & vanBergen En Henegouwen, P. M. P. (2017). Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors. Frontiers in Immunology, 8, 1287. https://doi.org/10.3389/fimmu.2017.01287

  162. Liu, H., Zhao, Z., Zhang, L., Li, Y., Jain, A., Barve, A., …Cheng, K. (2019). Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. Journal for Immunotherapy of Cancer, 7(1), 270. https://doi.org/10.1186/s40425-019-0705-y

  163. Watson, E. R., Novick, S., Matyskiela, M. E., Chamberlain, P. P., H de la Peña, A., Zhu, J., …Lander, G. C. (2022). Molecular glue CELMoD compounds are regulators of cereblon conformation. Science (New York, N.Y.), 378(6619), 549–553. https://doi.org/10.1126/science.add7574

  164. Lier, S., Sellmer, A., Orben, F., Heinzlmeir, S., Krauß, L., Schneeweis, C., …Schneider, G. (2022). A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry, 119, 105505. https://doi.org/10.1016/j.bioorg.2021.105505

  165. Bjorklund, C. C., Kang, J., Amatangelo, M., Polonskaia, A., Katz, M., Chiu, H., …Thakurta, A. (2020, April). Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia. England. https://doi.org/10.1038/s41375-019-0620-8

  166. Gramespacher, J. A., Cotton, A. D., Burroughs, P. W. W., Seiple, I. B., & Wells, J. A. (2022). Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins. ACS Chemical Biology, 17(5), 1259–1268. https://doi.org/10.1021/acschembio.2c00185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that the Figures presented in this work were created using BioRender, utilizing a licensed account purchased by Parham Jabbarzadeh Kaboli.

Funding

Article processing charge for the present review was paid by Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia for Reyhaneh Farghadani.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, P.J.K.; Writing – Original Draft, G.R., B.A., and P.J.K.; Writing – Review & Editing, P.J.K., S.I., and R.F.; Visualization, G.R. and B.A; Funding Acquisition, R.F.; Supervision, P.J.K.

Corresponding authors

Correspondence to Reyhaneh Farghadani or Parham Jabbarzadeh Kaboli.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable. None of the Figures used in the present review is not previously copyrighted, and the authors illustrated them.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roozitalab, G., Abedi, B., Imani, S. et al. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10174-x

Keywords

Navigation