Skip to main content

Advertisement

Log in

The emerging roles of histone demethylases in cancers

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

KDM:

Histone lysine demethylase

LSD1:

Lysine specific demethylase 1

JMJD:

JumonjiC domain-containing demethylase

PELP1:

Proline glutamic acid and leucine-rich protein 1

EZH2:

Zeste homolog 2

ER:

Estrogen receptor

CSC:

Cancer stem-cell

CRPC:

Castration-resistant prostate cancer

DNMT:

DNA methyltransferase

HIF:

Hypoxia-induced factor

EpCAM:

Epithelial cell adhesion molecule

VHL:

Von Hippel Lindau

ATRA:

All-trans-retinoic acid

MLL:

Mixed lineage leukemia

AML:

Acute myeloid leukemia

JAK:

Janus kinase

lncRNA:

Long noncoding RNA

BRCA:

Breast cancer susceptibility gene

HNSCC:

Head and neck squamous cell carcinoma

NEPC:

Neuroendocrine prostate cancer

PKM:

Pyruvate kinase muscle isozyme

References

  1. Huang, J., Sengupta, R., Espejo, A. B., Lee, M. G., Dorsey, J. A., Richter, M., Opravil, S., Shiekhattar, R., Bedford, M. T., Jenuwein, T., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105–108.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al. (2009). The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 41(1), 125–129.

    Article  CAS  PubMed  Google Scholar 

  3. Kontaki, H., & Talianidis, I. (2010). Lysine methylation regulates E2F1-induced cell death. Molecular Cell, 39(1), 152–160.

    Article  CAS  PubMed  Google Scholar 

  4. Lu, T., Jackson, M. W., Wang, B., Yang, M., Chance, M. R., Miyagi, M., Gudkov, A. V., & Stark, G. R. (2010). Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 46–51.

    Article  CAS  PubMed  Google Scholar 

  5. Chopra, A., Willmore, W. G., & Biggar, K. K. (2022). Insights into a cancer-target demethylase: substrate prediction through systematic specificity analysis for KDM3A. Biomolecules, 12(5), 641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baba, A., Ohtake, F., Okuno, Y., Yokota, K., Okada, M., Imai, Y., Ni, M., Meyer, C. A., Igarashi, K., Kanno, J., et al. (2011). PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nature Cell Biology, 13(6), 668–675.

    Article  PubMed  Google Scholar 

  7. Feng, T., Yamamoto, A., Wilkins, S. E., Sokolova, E., Yates, L. A., Munzel, M., Singh, P., Hopkinson, R. J., Fischer, R., Cockman, M. E., et al. (2014). Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Molecular Cell, 53(4), 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen, J., Xiang, X., Chen, L., Wang, H., Wu, L., Sun, Y., Ma, L., Gu, X., Liu, H., Wang, L., et al. (2017). JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Reports, 18(12), 2131–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, H., Wang, C., Lee, S., Ning, F., Wang, Y., Zhang, Q., Chen, Z., Zang, J., Nix, J., Dai, S., et al. (2018). Specific recognition of arginine methylated histone tails by JMJD5 and JMJD7. Science and Reports, 8(1), 3275.

    Article  Google Scholar 

  10. Webby, C. J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M. L., Schmitz, C., Butler, D. S., Yates, J. R., 3rd., et al. (2009). Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science, 325(5936), 90–93.

    Article  CAS  PubMed  Google Scholar 

  11. Mantri, M., Krojer, T., Bagg, E. A., Webby, C. A., Butler, D. S., Kochan, G., Kavanagh, K. L., Oppermann, U., McDonough, M. A., & Schofield, C. J. (2010). Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 401(2), 211–222.

    Article  CAS  PubMed  Google Scholar 

  12. Sterling, J., Menezes, S. V., Abbassi, R. H., & Munoz, L. (2020). Histone lysine demethylases and their functions in cancer. International Journal of Cancer, 148(10), 2375–2388.

    Article  PubMed  Google Scholar 

  13. Hojfeldt, J. W., Agger, K., & Helin, K. (2013). Histone lysine demethylases as targets for anticancer therapy. Nature Reviews. Drug Discovery, 12(12), 917–930.

    Article  CAS  PubMed  Google Scholar 

  14. Sarah, L., & Fujimori, D. (2023). Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Current opinion in structural biology, 83, 102707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorna, D., Grabowska, A., & Paluszczak, J. (2023). Natural products modulating epigenetic mechanisms by affecting histone methylation/demethylation: Targeting cancer cells. British Journal of Pharmacology. https://doi.org/10.1111/bph.16237

    Article  PubMed  Google Scholar 

  16. Young, D., Guha, C., & Sidoli, S. (2023). The role of histone H3 lysine demethylases in glioblastoma. Cancer and Metastasis Reviews, 42(2), 445–454.

    Article  CAS  PubMed  Google Scholar 

  17. Wu, C. Y., Hsieh, C. Y., Huang, K. E., Chang, C., & Kang, H. Y. (2012). Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. International Journal of Cancer, 131(6), 1423–1434.

    Article  CAS  PubMed  Google Scholar 

  18. Gao, S., Chen, S., Han, D., Wang, Z., Li, M., Han, W., Besschetnova, A., Liu, M., Zhou, F., Barrett, D., et al. (2020). Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 52(10), 1011–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Regufe da Mota, S., Bailey, S., Strivens, R. A., Hayden, A. L., Douglas, L. R., Duriez, P. J., Borrello, M. T., Benelkebir, H., Ganesan, A., Packham, G., et al. (2018). LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell International, 18, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sehrawat, A., Gao, L., Wang, Y., Bankhead, A., 3rd., McWeeney, S. K., King, C. J., Schwartzman, J., Urrutia, J., Bisson, W. H., Coleman, D. J., et al. (2018). LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 115(18), E4179–E4188.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z., Gao, S., Han, D., Han, W., Li, M., & Cai, C. (2019). LSD1 activates PI3K/AKT signaling through regulating p85 expression in prostate cancer cells. Frontiers in Oncology, 9, 721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta, S., Weston, A., Bearrs, J., Thode, T., Neiss, A., Soldi, R., & Sharma, S. (2016). Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration- and docetaxel-resistant prostate cancer cells. Prostate Cancer and Prostatic Diseases, 19(4), 349–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coleman, D. J., Sampson, D. A., Sehrawat, A., Kumaraswamy, A., Sun, D., Wang, Y., Schwartzman, J., Urrutia, J., Lee, A. R., Coleman, I. M., et al. (2020). Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 22(6), 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai, C., He, H. H., Chen, S., Coleman, I., Wang, H., Fang, Z., Nelson, P. S., Liu, X. S., Brown, M., & Balk, S. P. (2011). Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell, 20(4), 457–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortez, V., Mann, M., Tekmal, S., Suzuki, T., Miyata, N., Rodriguez-Aguayo, C., Lopez-Berestein, G., Sood, A. K., & Vadlamudi, R. K. (2012). Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Research, 14(4), R108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bennani-Baiti, I. M. (2012). Integration of ERalpha-PELP1-HER2 signaling by LSD1 (KDM1A/AOF2) offers combinatorial therapeutic opportunities to circumventing hormone resistance in breast cancer. Breast Cancer Research, 14(5), 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, S., Janzer, A., Becker, A., Zimmer, A., Schule, R., Buettner, R., & Kirfel, J. (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31(3), 512–520.

    Article  CAS  PubMed  Google Scholar 

  28. Pollock, J. A., Larrea, M. D., Jasper, J. S., McDonnell, D. P., & McCafferty, D. G. (2012). Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chemical Biology, 7(7), 1221–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J., Park, U. H., Moon, M., Um, S. J., & Kim, E. J. (2013). Negative regulation of ERalpha by a novel protein CAC1 through association with histone demethylase LSD1. FEBS Letters, 587(1), 17–22.

    Article  CAS  PubMed  Google Scholar 

  30. Grimaldi, P., Pucci, M., Di Siena, S., Di Giacomo, D., Pirazzi, V., Geremia, R., & Maccarrone, M. (2012). The faah gene is the first direct target of estrogen in the testis: Role of histone demethylase LSD1. Cellular and Molecular Life Sciences, 69(24), 4177–4190.

    Article  CAS  PubMed  Google Scholar 

  31. Cao, C., Vasilatos, S. N., Bhargava, R., Fine, J. L., Oesterreich, S., Davidson, N. E., & Huang, Y. (2017). Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene, 36(1), 133–145.

    Article  CAS  PubMed  Google Scholar 

  32. Vasilatos, S. N., Katz, T. A., Oesterreich, S., Wan, Y., Davidson, N. E., & Huang, Y. (2013). Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis, 34(6), 1196–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, M., Venkata, P. P., Viswanadhapalli, S., Palacios, B., Alejo, S., Chen, Y., He, Y., Pratap, U. P., Liu, J., Zou, Y., et al. (2021). KDM1A inhibition is effective in reducing stemness and treating triple negative breast cancer. Breast Cancer Research and Treatment, 185(2), 343–357.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Xiang, D., Xie, Y., Tao, L., Zhang, Y., Jin, Y., Pinello, L., Wan, Y., Yuan, G. C., & Li, Z. (2019). LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene, 38(44), 7017–7034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., Shi, L., et al. (2009). LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell, 138(4), 660–672.

    Article  CAS  PubMed  Google Scholar 

  36. Malagraba, G., Yarmohammadi, M., Javed, A., Barcelo, C., & Rubio-Tomas, T. (2022). The Role of LSD1 and LSD2 in Cancers of the Gastrointestinal System: An Update. Biomolecules, 12(3), 462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Magerl, C., Ellinger, J., Braunschweig, T., Kremmer, E., Koch, L. K., Holler, T., Buttner, R., Luscher, B., & Gutgemann, I. (2010). H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Human Pathology, 41(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, T. P., Wang, W. Y., Ma, P., Shuai, Y., Zhao, K., Wang, Y. F., Li, W., Xia, R., Chen, W. M., Zhang, E. B., et al. (2018). Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene, 37(36), 5020–5036.

    Article  CAS  PubMed  Google Scholar 

  39. Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016). LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Research, 76(21), 6299–6310.

    Article  CAS  PubMed  Google Scholar 

  40. Ding, J., Xie, M., Lian, Y., Zhu, Y., Peng, P., Wang, J., Wang, L., & Wang, K. (2017). Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis, 6(1), e288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y., Sun, L., Luo, Y., & He, S. (2019). Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathology, Research and Practice, 215(5), 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  42. Cai, S., Wang, J., Zeng, W., Cheng, X., Liu, L., & Li, W. (2020). Lysine-specific histone demethylase 1B (LSD2/KDM1B) represses p53 expression to promote proliferation and inhibit apoptosis in colorectal cancer through LSD2-mediated H3K4me2 demethylation. Aging (Albany NY), 12(14), 14990–15001.

    Article  CAS  PubMed  Google Scholar 

  43. Huang, Y., Yin, Y., & Sun, M. (2018). Targeting LSD2 in breast cancer. Aging (Albany NY), 10(1), 11–12.

    Article  PubMed  Google Scholar 

  44. Chen, J. Y., Luo, C. W., Lai, Y. S., Wu, C. C., & Hung, W. C. (2017). Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogenesis, 6(8), e369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, Y., Chen, X., Jiang, J., Wan, X., Wang, Y., & Xu, P. (2020). Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866(10), 165856.

    Article  CAS  PubMed  Google Scholar 

  46. Kong, Y., Zou, S., Yang, F., Xu, X., Bu, W., Jia, J., & Liu, Z. (2016). RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. Cancer Letters, 381(1), 138–148.

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A., & Copeland, N. G. (2006). Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO Journal, 25(14), 3422–3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pfau, R., Tzatsos, A., Kampranis, S. C., Serebrennikova, O. B., Bear, S. E., & Tsichlis, P. N. (2008). Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1907–1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R., & Pagano, M. (2007). JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 450(7167), 309–313.

    Article  CAS  PubMed  Google Scholar 

  50. Frescas, D., Guardavaccaro, D., Kuchay, S. M., Kato, H., Poleshko, A., Basrur, V., Elenitoba-Johnson, K. S., Katz, R. A., & Pagano, M. (2008). KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 7(22), 3539–3547.

    Article  CAS  PubMed  Google Scholar 

  51. Pedersen, M. T., & Helin, K. (2010). Histone demethylases in development and disease. Trends in Cell Biology, 20(11), 662–671.

    Article  CAS  PubMed  Google Scholar 

  52. Ueda, T., Nagamachi, A., Takubo, K., Yamasaki, N., Matsui, H., Kanai, A., Nakata, Y., Ikeda, K., Konuma, T., Oda, H., et al. (2015). Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood, 125(22), 3437–3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He, J., Nguyen, A. T., & Zhang, Y. (2011). KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood, 117(14), 3869–3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, X., Wang, X., Li, Q., Chen, W., Zhang, N., Kong, Y., Lv, J., Cao, L., Lin, D., Xu, G., et al. (2018). FBXL10 contributes to the development of diffuse large B-cell lymphoma by epigenetically enhancing ERK1/2 signaling pathway. Cell Death & Disease, 9(2), 46.

    Article  Google Scholar 

  55. Tzatsos, A., Paskaleva, P., Lymperi, S., Contino, G., Stoykova, S., Chen, Z., Wong, K. K., & Bardeesy, N. (2011). Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. Journal of Biological Chemistry, 286(38), 33061–33069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan, M., Yang, X., Shen, R., Wu, C., Wang, H., Ye, Q., Yang, P., Zhang, L., Chen, M., Wan, B., et al. (2018). miR-146b promotes cell proliferation and increases chemosensitivity, but attenuates cell migration and invasion via FBXL10 in ovarian cancer. Cell Death & Disease, 9(11), 1123.

    Article  Google Scholar 

  57. Koyama-Nasu, R., David, G., & Tanese, N. (2007). The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nature Cell Biology, 9(9), 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  58. Polytarchou, C., Pfau, R., Hatziapostolou, M., & Tsichlis, P. N. (2008). The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress. Molecular and Cellular Biology, 28(24), 7451–7464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han, X. R., Zha, Z., Yuan, H. X., Feng, X., Xia, Y. K., Lei, Q. Y., Guan, K. L., & Xiong, Y. (2016). KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene, 35(32), 4179–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V., & Staller, P. (2008). The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. Journal of Biological Chemistry, 283(52), 36542–36552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krieg, A. J., Rankin, E. B., Chan, D., Razorenova, O., Fernandez, S., & Giaccia, A. J. (2010). Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Molecular and Cellular Biology, 30(1), 344–353.

    Article  CAS  PubMed  Google Scholar 

  62. Pollard, P. J., Loenarz, C., Mole, D. R., McDonough, M. A., Gleadle, J. M., Schofield, C. J., & Ratcliffe, P. J. (2008). Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. The Biochemical Journal, 416(3), 387–394.

    Article  CAS  PubMed  Google Scholar 

  63. Wan, W., Peng, K., Li, M., Qin, L., Tong, Z., Yan, J., Shen, B., & Yu, C. (2017). Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1alpha. Oncogene, 36(27), 3868–3877.

    Article  CAS  PubMed  Google Scholar 

  64. Mimura, I., Nangaku, M., Kanki, Y., Tsutsumi, S., Inoue, T., Kohro, T., Yamamoto, S., Fujita, T., Shimamura, T., Suehiro, J., et al. (2012). Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Molecular and Cellular Biology, 32(15), 3018–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., & Zhang, Y. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125(3), 483–495.

    Article  CAS  PubMed  Google Scholar 

  66. Xu, S., Fan, L., Jeon, H. Y., Zhang, F., Cui, X., Mickle, M. B., Peng, G., Hussain, A., Fazli, L., Gleave, M. E., et al. (2020). p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Research, 80(15), 3074–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fan, L., Zhang, F., Xu, S., Cui, X., Hussain, A., Fazli, L., Gleave, M., Dong, X., & Qi, J. (2018). Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A, 115(20), E4584–E4593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang, D. E., Dai, Y., Fan, L. L., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Histone demethylase JMJD1A promotes tumor progression via activating snail in prostate cancer. Molecular Cancer Research, 18(5), 698–708.

    Article  CAS  PubMed  Google Scholar 

  69. Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11(4), 214.

    Article  CAS  Google Scholar 

  70. Kim, J. Y., Kim, K. B., Eom, G. H., Choe, N., Kee, H. J., Son, H. J., Oh, S. T., Kim, D. W., Pak, J. H., Baek, H. J., et al. (2012). KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Molecular and Cellular Biology, 32(14), 2917–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakamura, S., Tan, L., Nagata, Y., Takemura, T., Asahina, A., Yokota, D., Yagyu, T., Shibata, K., Fujisawa, S., & Ohnishi, K. (2013). JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia. Molecular Carcinogenesis, 52(1), 57–69.

    Article  CAS  PubMed  Google Scholar 

  72. Hu, Z., Gomes, I., Horrigan, S. K., Kravarusic, J., Mar, B., Arbieva, Z., Chyna, B., Fulton, N., Edassery, S., Raza, A., et al. (2001). A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene, 20(47), 6946–6954.

    Article  CAS  PubMed  Google Scholar 

  73. Sui, Y., Gu, R., & Janknecht, R. (2021). Crucial functions of the JMJD1/KDM3 epigenetic regulators in cancer. Molecular Cancer Research, 19(1), 3–13.

    Article  CAS  PubMed  Google Scholar 

  74. Saavedra, F., Gurard-Levin, Z. A., Rojas-Villalobos, C., Vassias, I., Quatrini, R., Almouzni, G., & Loyola, A. (2020). JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics & Chromatin, 13(1), 6.

    Article  Google Scholar 

  75. Peeken, J. C., Jutzi, J. S., Wehrle, J., Koellerer, C., Staehle, H. F., Becker, H., Schoenwandt, E., Seeger, T. S., Schanne, D. H., Gothwal, M., et al. (2018). Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms. Blood, 131(18), 2065–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Izaguirre-Carbonell, J., Christiansen, L., Burns, R., Schmitz, J., Li, C., Mokry, R. L., Bluemn, T., Zheng, Y., Shen, J., Carlson, K. S., et al. (2019). Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia. Blood Advances, 3(9), 1499–1511.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu, N., Chen, M., Eng, R., DeJong, J., Sinha, A. U., Rahnamay, N. F., Koche, R., Al-Shahrour, F., Minehart, J. C., Chen, C. W., et al. (2016). MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. The Journal of Clinical Investigation, 126(3), 997–1011.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lynch, J. R., Salik, B., Connerty, P., Vick, B., Leung, H., Pijning, A., Jeremias, I., Spiekermann, K., Trahair, T., Liu, T., et al. (2019). JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia, 33(6), 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  79. Chen, M., Zhu, N., Liu, X., Laurent, B., Tang, Z., Eng, R., Shi, Y., Armstrong, S. A., & Roeder, R. G. (2015). JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes & Development, 29(20), 2123–2139.

    Article  CAS  Google Scholar 

  80. Schimek, V., Bjorn, N., Pelle, L., Svedberg, A., & Green, H. (2021). JMJD1C knockdown affects myeloid cell lines proliferation, viability, and gemcitabine/carboplatin-sensitivity. Pharmacogenetics and Genomics, 31(3), 60–67.

    Article  CAS  PubMed  Google Scholar 

  81. Xu, X., Wang, L., Hu, L., Dirks, W. G., Zhao, Y., Wei, Z., Chen, D., Li, Z., Wang, Z., Han, Y., et al. (2020). Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. International Journal of Cancer, 146(2), 400–412.

    Article  CAS  PubMed  Google Scholar 

  82. Black, J. C., Allen, A., Van Rechem, C., Forbes, E., Longworth, M., Tschop, K., Rinehart, C., Quiton, J., Walsh, R., Smallwood, A., et al. (2010). Conserved antagonism between JMJD2A/KDM4A and HP1gamma during cell cycle progression. Molecular Cell, 40(5), 736–748.

    Article  CAS  PubMed  Google Scholar 

  83. Kim, T. D., Shin, S., Berry, W. L., Oh, S., & Janknecht, R. (2012). The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. Journal of Cellular Biochemistry, 113(4), 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  84. Gray, S. G., Iglesias, A. H., Lizcano, F., Villanueva, R., Camelo, S., Jingu, H., Teh, B. T., Koibuchi, N., Chin, W. W., Kokkotou, E., et al. (2005). Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. Journal of Biological Chemistry, 280(31), 28507–28518.

    Article  CAS  PubMed  Google Scholar 

  85. Li, B. X., Zhang, M. C., Luo, C. L., Yang, P., Li, H., Xu, H. M., Xu, H. F., Shen, Y. W., Xue, A. M., & Zhao, Z. Q. (2011). Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. Journal of Experimental & Clinical Cancer Research, 30, 90.

    Article  Google Scholar 

  86. Berry, W. L., Shin, S., Lightfoot, S. A., & Janknecht, R. (2012). Oncogenic features of the JMJD2A histone demethylase in breast cancer. International Journal of Oncology, 41(5), 1701–1706.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J., Li, Q., Zhang, S., Xu, Q., & Wang, T. (2016). Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Experimental Cell Research, 349(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  88. Cui, S. Z., Lei, Z. Y., Guan, T. P., Fan, L. L., Li, Y. Q., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Science, 111(5), 1567–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, J. G., Yi, J. M., Park, S. J., Kim, J. S., Son, T. G., Yang, K., Yoo, M. A., & Heo, K. (2012). Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell. Biochimica et Biophysica Acta, 1819(11–12), 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  90. Fu, L., Chen, L., Yang, J., Ye, T., Chen, Y., & Fang, J. (2012). HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis, 33(9), 1664–1673.

    Article  CAS  PubMed  Google Scholar 

  91. Yang, J., Jubb, A. M., Pike, L., Buffa, F. M., Turley, H., Baban, D., Leek, R., Gatter, K. C., Ragoussis, J., & Harris, A. L. (2010). The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Research, 70(16), 6456–6466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi, L., Sun, L., Li, Q., Liang, J., Yu, W., Yi, X., Yang, X., Li, Y., Han, X., Zhang, Y., et al. (2011). Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7541–7546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kawazu, M., Saso, K., Tong, K. I., McQuire, T., Goto, K., Son, D. O., Wakeham, A., Miyagishi, M., Mak, T. W., & Okada, H. (2011). Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS ONE, 6(3), e17830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hui, Z., Yiling, C., Wenting, Y., XuQun, H., ChuanYi, Z., & Hui, L. (2015). miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERalpha-positive breast cancer. FEBS Letters, 589(7), 812–821.

    Article  CAS  PubMed  Google Scholar 

  95. Castellini, L., Moon, E. J., Razorenova, O. V., Krieg, A. J., von Eyben, R., & Giaccia, A. J. (2017). KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Research, 45(7), 3674–3692.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng, H., Chen, L., Pledger, W. J., Fang, J., & Chen, J. (2013). p53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene, 33(6), 734–744.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Duan, L., Perez, R. E., Lai, X., Chen, L., & Maki, C. G. (2019). The histone demethylase JMJD2B is critical for p53-mediated autophagy and survival in Nutlin-treated cancer cells. Journal of Biological Chemistry, 294(23), 9186–9197.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu, L., Yu, T., Jin, Y., Mai, W., Zhou, J., & Zhao, C. (2021). MicroRNA-15a carried by mesenchymal stem cell-derived extracellular vesicles inhibits the immune evasion of colorectal cancer cells by regulating the KDM4B/HOXC4/PD-L1 Axis. Frontiers in Cell and Developmental Biology, 9, 629893.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tang, D. E., Dai, Y., He, J. X., Lin, L. W., Leng, Q. X., Geng, X. Y., Fu, D. X., Jiang, H. W., & Xu, S. H. (2020). Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor-targeted therapy in advanced prostate cancer. The Journal of Pathology, 252(2), 101–113.

    Article  CAS  PubMed  Google Scholar 

  100. Duan, L., Chen, Z., Lu, J., Liang, Y., Wang, M., Roggero, C. M., Zhang, Q. J., Gao, J., Fang, Y., Cao, J., et al. (2019). Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 47(22), 11623–11636.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sha, J., Han, Q., Chi, C., Zhu, Y., Pan, J., Dong, B., Huang, Y., Xia, W., & Xue, W. (2020). Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy. Journal of Cellular Physiology, 235(3), 2129–2138.

    Article  CAS  PubMed  Google Scholar 

  102. Margareto, J., Leis, O., Larrarte, E., Pomposo, I. C., Garibi, J. M., & Lafuente, J. V. (2009). DNA copy number variation and gene expression analyses reveal the implication of specific oncogenes and genes in GBM. Cancer Investigation, 27(5), 541–548.

    Article  CAS  PubMed  Google Scholar 

  103. Ehrbrecht, A., Muller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., Actor, B., Mincheva, A., Pietsch, T., Lichter, P., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: Identification of novel amplified genes and separate evaluation of the different histological components. The Journal of Pathology, 208(4), 554–563.

    Article  CAS  PubMed  Google Scholar 

  104. Italiano, A., Attias, R., Aurias, A., Perot, G., Burel-Vandenbos, F., Otto, J., Venissac, N., & Pedeutour, F. (2006). Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genetics and Cytogenetics, 167(2), 122–130.

    Article  CAS  PubMed  Google Scholar 

  105. Helias, C., Struski, S., Gervais, C., Leymarie, V., Mauvieux, L., Herbrecht, R., & Lessard, M. (2008). Polycythemia vera transforming to acute myeloid leukemia and complex abnormalities including 9p homogeneously staining region with amplification of MLLT3, JMJD2C, JAK2, and SMARCA2. Cancer Genetics and Cytogenetics, 180(1), 51–55.

    Article  CAS  PubMed  Google Scholar 

  106. Nacheva, E. P., Brazma, D., Virgili, A., Howard-Reeves, J., Chanalaris, A., Gancheva, K., Apostolova, M., Valganon, M., Mazzullo, H., & Grace, C. (2010). Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics, 11, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Vinatzer, U., Gollinger, M., Mullauer, L., Raderer, M., Chott, A., & Streubel, B. (2008). Mucosa-associated lymphoid tissue lymphoma: Novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clinical Cancer Research, 14(20), 6426–6431.

    Article  CAS  PubMed  Google Scholar 

  108. Liu, G., Bollig-Fischer, A., Kreike, B., van de Vijver, M. J., Abrams, J., Ethier, S. P., & Yang, Z. Q. (2009). Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 28(50), 4491–4500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berdel, B., Nieminen, K., Soini, Y., Tengstrom, M., Malinen, M., Kosma, V. M., Palvimo, J., & Mannermaa, A. (2012). Histone demethylase GASC1—A potential prognostic and predictive marker in invasive breast cancer. BMC Cancer, 12(1), 516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Han, W., Jung, E. M., Cho, J., Lee, J. W., Hwang, K. T., Yang, S. J., Kang, J. J., Bae, J. Y., Jeon, Y. K., Park, I. A., et al. (2008). DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes, Chromosomes & Cancer, 47(6), 490–499.

    Article  CAS  Google Scholar 

  111. Wu, J., Liu, S., Liu, G., Dombkowski, A., Abrams, J., Martin-Trevino, R., Wicha, M. S., Ethier, S. P., & Yang, Z. Q. (2012). Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 31(3), 333–341.

    Article  CAS  PubMed  Google Scholar 

  112. Rui, L., Emre, N. C., Kruhlak, M. J., Chung, H. J., Steidl, C., Slack, G., Wright, G. W., Lenz, G., Ngo, V. N., Shaffer, A. L., et al. (2010). Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell, 18(6), 590–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peng, K., Zhuo, M., Li, M., Chen, Q., Mo, P., & Yu, C. (2020). Histone demethylase JMJD2D activates HIF1 signaling pathway via multiple mechanisms to promote colorectal cancer glycolysis and progression. Oncogene, 39(47), 7076–7091.

    Article  CAS  PubMed  Google Scholar 

  114. Deng, Y., Li, M., Zhuo, M., Guo, P., Chen, Q., Mo, P., Li, W., & Yu, C. (2021). Histone demethylase JMJD2D promotes the self-renewal of liver cancer stem-like cells by enhancing EpCAM and Sox9 expression. Journal of Biological Chemistry, 296, 100121.

  115. Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of Hematology & Oncology, 14(1), 30.

    Article  CAS  Google Scholar 

  116. Yang, G. J., Wu, J., Miao, L., Zhu, M. H., Zhou, Q. J., Lu, X. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). Pharmacological inhibition of KDM5A for cancer treatment. European Journal of Medicinal Chemistry, 226, 113855.

    Article  CAS  PubMed  Google Scholar 

  117. Wang, G. G., Song, J., Wang, Z., Dormann, H. L., Casadio, F., Li, H., Luo, J. L., Patel, D. J., & Allis, C. D. (2009). Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature, 459(7248), 847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zeng, J., Ge, Z., Wang, L., Li, Q., Wang, N., Bjorkholm, M., Jia, J., & Xu, D. (2010). The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology, 138(3), 981–992.

    Article  CAS  PubMed  Google Scholar 

  119. Peng, D., Lin, B., Xie, M., Zhang, P., Guo, Q., Li, Q., Gu, Q., Yang, S., & Sen, L. (2021). Histone demethylase KDM5A promotes tumorigenesis of osteosarcoma tumor. Cell Death Discov, 7(1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cardin, S., Bilodeau, M., Roussy, M., Aubert, L., Milan, T., Jouan, L., Rouette, A., Laramee, L., Gendron, P., Duchaine, J., et al. (2019). Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Advances, 3(21), 3307–3321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van Zutven, L. J., Onen, E., Velthuizen, S. C., van Drunen, E., von Bergh, A. R., van den Heuvel-Eibrink, M. M., Veronese, A., Mecucci, C., Negrini, M., de Greef, G. E., et al. (2006). Identification of NUP98 abnormalities in acute leukemia: JARID1A (12p13) as a new partner gene. Genes, Chromosomes & Cancer, 45(5), 437–446.

    Article  Google Scholar 

  122. Xia, X., Lemieux, M. E., Li, W., Carroll, J. S., Brown, M., Liu, X. S., & Kung, A. L. (2009). Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4260–4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma, Y. S., Wu, T. M., Qian, B., Liu, Y. S., Ding, H., Fan, M. M., Liu, J. B., Yu, F., Wang, H. M., Shi, Y., et al. (2021). KDM5A silencing transcriptionally suppresses the FXYD3-PI3K/AKT axis to inhibit angiogenesis in hepatocellular cancer via miR-433 up-regulation. Journal of Cellular and Molecular Medicine, 25(8), 4040–4052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou, X., Sun, H., Chen, H., Zavadil, J., Kluz, T., Arita, A., & Costa, M. (2010). Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Research, 70(10), 4214–4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xhabija, B., & Kidder, B. L. (2019). KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Seminars in Cancer Biology, 57, 79–85.

    Article  CAS  PubMed  Google Scholar 

  126. Xiang, Y., Zhu, Z., Han, G., Ye, X., Xu, B., Peng, Z., Ma, Y., Yu, Y., Lin, H., Chen, A. P., et al. (2007). JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19226–19231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barrett, A., Santangelo, S., Tan, K., Catchpole, S., Roberts, K., Spencer-Dene, B., Hall, D., Scibetta, A., Burchell, J., Verdin, E., et al. (2007). Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. International Journal of Cancer, 121(2), 265–275.

    Article  CAS  PubMed  Google Scholar 

  128. Li, G., Kanagasabai, T., Lu, W., Zou, M. R., Zhang, S. M., Celada, S. I., Izban, M. G., Liu, Q., Lu, T., Ballard, B. R., et al. (2020). KDM5B is essential for the hyperactivation of PI3K/AKT signaling in prostate tumorigenesis. Cancer Research, 80(21), 4633–4643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mitra, D., Das, P. M., Huynh, F. C., & Jones, F. E. (2011). Jumonji/ARID1 B (JARID1B) protein promotes breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. Journal of Biological Chemistry, 286(47), 40531–40535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Catchpole, S., Spencer-Dene, B., Hall, D., Santangelo, S., Rosewell, I., Guenatri, M., Beatson, R., Scibetta, A. G., Burchell, J. M., & Taylor-Papadimitriou, J. (2011). PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. International Journal of Oncology, 38(5), 1267–1277.

    CAS  PubMed  Google Scholar 

  131. Wang, J., Wu, X., & Shan, L. (2018). JARID1B modulates breast cancer cell apoptosis by regulating p53 expression. International Journal of Clinical and Experimental Pathology, 11(9), 4529–4536.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Scibetta, A. G., Santangelo, S., Coleman, J., Hall, D., Chaplin, T., Copier, J., Catchpole, S., Burchell, J., & Taylor-Papadimitriou, J. (2007). Functional analysis of the transcription repressor PLU-1/JARID1B. Molecular and Cellular Biology, 27(20), 7220–7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yamane, K., Tateishi, K., Klose, R. J., Fang, J., Fabrizio, L. A., Erdjument-Bromage, H., Taylor-Papadimitriou, J., Tempst, P., & Zhang, Y. (2007). PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Molecular Cell, 25(6), 801–812.

    Article  CAS  PubMed  Google Scholar 

  134. Nisio, E. D., Licursi, V., Mannironi, C., Buglioni, V., Paiardini, A., Robusti, G., Noberini, R., Bonaldi, T., & Negri, R. (2023). A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 trimethylation and gene expression. Cancer Gene Therapy, 30, 822–832.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang, Z. G., Zhang, H. S., Sun, H. L., Liu, H. Y., Liu, M. Y., & Zhou, Z. (2019). KDM5B promotes breast cancer cell proliferation and migration via AMPK-mediated lipid metabolism reprogramming. Experimental Cell Research, 379(2), 182–190.

    Article  CAS  PubMed  Google Scholar 

  136. Li, Q., Shi, L., Gui, B., Yu, W., Wang, J., Zhang, D., Han, X., Yao, Z., & Shang, Y. (2011). Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Research, 71(21), 6899–6908.

    Article  CAS  PubMed  Google Scholar 

  137. Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., Basu, D., Gimotty, P., Vogt, T., & Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vogel, F. C. E., Bordag, N., Zugner, E., Trajkovic-Arsic, M., Chauvistre, H., Shannan, B., Varaljai, R., Horn, S., Magnes, C., Thomas Siveke, J., et al. (2019). Targeting the H3K4 demethylase KDM5B reprograms the metabolome and phenotype of melanoma cells. Journal of Investigative Dermatology, 139(12), 2506–2516.

    Article  CAS  PubMed  Google Scholar 

  139. Liu, X., Zhang, S. M., McGeary, M. K., Krykbaeva, I., Lai, L., Jansen, D. J., Kales, S. C., Simeonov, A., Hall, M. D., Kelly, D. P., et al. (2019). KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations. Molecular Cancer Therapeutics, 18(3), 706–717.

    Article  CAS  PubMed  Google Scholar 

  140. Hayami, S., Yoshimatsu, M., Veerakumarasivam, A., Unoki, M., Iwai, Y., Tsunoda, T., Field, H. I., Kelly, J. D., Neal, D. E., Yamaue, H., et al. (2010). Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: Involvement in the proliferation of cancer cells through the E2F/RB pathway. Molecular Cancer, 9, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nijwening, J. H., Geutjes, E. J., Bernards, R., & Beijersbergen, R. L. (2011). The histone demethylase Jarid1b (Kdm5b) is a novel component of the Rb pathway and associates with E2f-target genes in MEFs during senescence. PLoS ONE, 6(9), e25235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Benevolenskaya, E. V., Murray, H. L., Branton, P., Young, R. A., & Kaelin, W. G., Jr. (2005). Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Molecular Cell, 18(6), 623–635.

    Article  CAS  PubMed  Google Scholar 

  143. Huang, Y., Zou, Y., Zheng, R., & Ma, X. (2019). MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. European Journal of Haematology, 103(3), 215–224.

    Article  CAS  PubMed  Google Scholar 

  144. Guo, J. C., Liu, Z., Yang, Y. J., Guo, M., Zhang, J. Q., & Zheng, J. F. (2021). KDM5B promotes self-renewal of hepatocellular carcinoma cells through the microRNA-448-mediated YTHDF3/ITGA6 axis. Journal of Cellular and Molecular Medicine, 25(13), 5949–5962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McBrayer, S. K., Olenchock, B. A., DiNatale, G. J., Shi, D. D., Khanal, J., Jennings, R. B., Novak, J. S., Oser, M. G., Robbins, A. K., Modiste, R., et al. (2018). Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proceedings of the National Academy of Sciences of the United States of America, 115(16), E3741–E3748.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pu, Y., Xiang, J., & Zhang, J. (2020). KDM5B-mediated microRNA-448 up-regulation restrains papillary thyroid cancer cell progression and slows down tumor growth via TGIF1 repression. Life Sciences, 250, 117519.

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, Y., An, Q., Guo, R. X., Qiao, Y. H., Li, L. X., Zhang, X. Y., & Zhao, X. L. (2017). miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life Sciences, 171, 9–15.

    Article  CAS  PubMed  Google Scholar 

  148. Xu, L. M., Yu, H., Yuan, Y. J., Zhang, J., Ma, Y., Cao, X. C., Wang, J., Zhao, L. J., & Wang, P. (2020). overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1alpha-suppression mediated methylation of PTEN. Frontiers in Cell and Developmental Biology, 8, 553733.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dalgliesh, G. L., Furge, K., Greenman, C., Chen, L., Bignell, G., Butler, A., Davies, H., Edkins, S., Hardy, C., Latimer, C., et al. (2010). Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature, 463(7279), 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liao, L., Liu, Z. Z., Langbein, L., Cai, W., Cho, E. A., Na, J., Niu, X., Jiang, W., Zhong, Z., Cai, W. L., et al. (2018). Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. Elife, 7, e37925.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Niu, X., Zhang, T., Liao, L., Zhou, L., Lindner, D. J., Zhou, M., Rini, B., Yan, Q., & Yang, H. (2012). The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene, 31(6), 776–786.

    Article  CAS  PubMed  Google Scholar 

  152. Gao, X., Jegede, O., Gray, C., Catalano, P. J., Novak, J., Kwiatkowski, D. J., McKay, R. R., George, D. J., Choueiri, T. K., McDermott, D. F., et al. (2018). Comprehensive genomic profiling of metastatic tumors in a phase 2 biomarker study of everolimus in advanced renal cell carcinoma. Clinical Genitourinary Cancer, 16(5), 341–348.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Perinchery, G., Sasaki, M., Angan, A., Kumar, V., Carroll, P., & Dahiya, R. (2000). Deletion of Y-chromosome specific genes in human prostate cancer. Journal of Urology, 163(4), 1339–1342.

    Article  CAS  PubMed  Google Scholar 

  154. Gupta, S., Halabi, S., Kemeny, G., Anand, M., Giannakakou, P., Nanus, D. M., George, D. J., Gregory, S. G., & Armstrong, A. J. (2021). Circulating tumor cell genomic evolution and hormone therapy outcomes in men with metastatic castration-resistant prostate cancer. Molecular Cancer Research, 19(6), 1040–1050.

    Article  CAS  PubMed  Google Scholar 

  155. Li, N., Dhar, S. S., Chen, T. Y., Kan, P. Y., Wei, Y., Kim, J. H., Chan, C. H., Lin, H. K., Hung, M. C., & Lee, M. G. (2016). JARID1D Is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Research, 76(4), 831–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Komura, K., Jeong, S. H., Hinohara, K., Qu, F., Wang, X., Hiraki, M., Azuma, H., Lee, G. S., Kantoff, P. W., & Sweeney, C. J. (2016). Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proceedings of the National Academy of Sciences of the United States of America, 113(22), 6259–6264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Komura, K., Yoshikawa, Y., Shimamura, T., Chakraborty, G., Gerke, T. A., Hinohara, K., Chadalavada, K., Jeong, S. H., Armenia, J., Du, S. Y., et al. (2018). ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. The Journal of Clinical Investigation, 128(7), 2979–2995.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hurst, C. D., Alder, O., Platt, F. M., Droop, A., Stead, L. F., Burns, J. E., Burghel, G. J., Jain, S., Klimczak, L. J., Lindsay, H., et al. (2017). Genomic subtypes of non-invasive bladder cancer with distinct metabolic Profile and female gender bias in KDM6A mutation frequency. Cancer Cell, 32(5), 701–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaneko, S., & Li, X. (2018). X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Science Advances, 4(6), eaar5598.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kim, G. J., Kim, D. H., Min, K. W., Chae, S. W., Kim, S. H., Son, B. K., Moon, K. M., & Kim, Y. H. (2020). Expression of UTX indicates poor prognosis in patients with luminal breast cancer and is associated with MMP-11 expression. Applied Immunohistochemistry & Molecular Morphology, 28(7), 544–550.

    Article  CAS  Google Scholar 

  161. Benedetti, R., Dell’Aversana, C., De Marchi, T., Rotili, D., Liu, N. Q., Novakovic, B., Boccella, S., Di Maro, S., Cosconati, S., Baldi, A., et al. (2019). Inhibition of histone demethylases LSD1 and UTX regulates ERalpha signaling in breast cancer. Cancers (Basel), 11(12), 2027.

    Article  CAS  PubMed  Google Scholar 

  162. Lu, H., Xie, Y., Tran, L., Lan, J., Yang, Y., Murugan, N. L., Wang, R., Wang, Y. J., & Semenza, G. L. (2020). Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. The Journal of Clinical Investigation, 130(9), 4607–4623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nickerson, M. L., Dancik, G. M., Im, K. M., Edwards, M. G., Turan, S., Brown, J., Ruiz-Rodriguez, C., Owens, C., Costello, J. C., Guo, G., et al. (2014). Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clinical Cancer Research, 20(18), 4935–4948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gui, Y., Guo, G., Huang, Y., Hu, X., Tang, A., Gao, S., Wu, R., Chen, C., Li, X., Zhou, L., et al. (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genetics, 43(9), 875–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ler, L. D., Ghosh, S., Chai, X., Thike, A. A., Heng, H. L., Siew, E. Y., Dey, S., Koh, L. K., Lim, J. Q., Lim, W. K., et al. (2017). Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Science Translational Medicine, 9(378), eaai8312.

    Article  PubMed  Google Scholar 

  166. Kobatake, K., Ikeda, K. I., Nakata, Y., Yamasaki, N., Ueda, T., Kanai, A., Sentani, K., Sera, Y., Hayashi, T., Koizumi, M., et al. (2020). Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clinical Cancer Research, 26(8), 2065–2079.

    Article  CAS  PubMed  Google Scholar 

  167. Barrows, D., Feng, L., Carroll, T. S., & Allis, C. D. (2020). Loss of UTX/KDM6A and the activation of FGFR3 converge to regulate differentiation gene-expression programs in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 117(41), 25732–25741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Andricovich, J., Perkail, S., Kai, Y., Casasanta, N., Peng, W., & Tzatsos, A. (2018). Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell, 33(3), 512–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Watanabe, S., Shimada, S., Akiyama, Y., Ishikawa, Y., Ogura, T., Ogawa, K., Ono, H., Mitsunori, Y., Ban, D., Kudo, A., et al. (2019). Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. International Journal of Cancer, 145(1), 192–205.

    Article  CAS  PubMed  Google Scholar 

  170. Kalisz, M., Bernardo, E., Beucher, A., Maestro, M. A., Del Pozo, N., Millan, I., Haeberle, L., Schlensog, M., Safi, S. A., Knoefel, W. T., et al. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO Journal, 39(9), e102808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Barthel, S., Schneider, G., & Saur, D. (2020). Blocking the road to de-differentiation: HNF1A/KDM6A complex safeguards epithelial integrity in pancreatic cancer. EMBO Journal, 39(9), e104759.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kim, J. H., Sharma, A., Dhar, S. S., Lee, S. H., Gu, B., Chan, C. H., Lin, H. K., & Lee, M. G. (2014). UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Research, 74(6), 1705–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hinz, S., Weikert, S., Magheli, A., Hoffmann, M., Engers, R., Miller, K., & Kempkensteffen, C. (2009). Expression profile of the polycomb group protein enhancer of Zeste homologue 2 and its prognostic relevance in renal cell carcinoma. Journal of Urology, 182(6), 2920–2925.

    Article  CAS  PubMed  Google Scholar 

  174. Kato, H., Asamitsu, K., Sun, W., Kitajima, S., Yoshizawa-Sugata, N., Okamoto, T., Masai, H., & Poellinger, L. (2020). Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene, 39(16), 3322–3335.

    Article  CAS  PubMed  Google Scholar 

  175. Zha, L., Cao, Q., Cui, X., Li, F., Liang, H., Xue, B., & Shi, H. (2016). Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Medical Oncology, 33(3), 21.

    Article  PubMed  Google Scholar 

  176. Tang, X., Cai, W., Cheng, J., Lu, P., Ma, S., Chen, C., Chen, Y., Sun, Y., Wang, C., Hu, P., et al. (2019). The histone H3 lysine-27 demethylase UTX plays a critical role in colorectal cancer cell proliferation. Cancer Cell International, 19, 144.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Chen, X., Yang, Z., Feng, J., Duan, T., Pan, T., Yan, L., Jin, T., Xiang, Y., Zhang, M., Chen, P., et al. (2021). Combination of lysine-specific demethylase 6A (KDM6A) and mismatch repair (MMR) status is a potential prognostic factor in colorectal cancer. Cancer Medicine, 10(1), 317–324.

    Article  CAS  PubMed  Google Scholar 

  178. Terashima, M., Ishimura, A., Wanna-Udom, S., & Suzuki, T. (2017). Epigenetic regulation of epithelial-mesenchymal transition by KDM6A histone demethylase in lung cancer cells. Biochemical and Biophysical Research Communications, 490(4), 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  179. Mar, B. G., Bullinger, L., Basu, E., Schlis, K., Silverman, L. B., Dohner, K., & Armstrong, S. A. (2012). Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia. Leukemia, 26(8), 1881–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, J. K., Tsai, M. C., Poulin, G., Adler, A. S., Chen, S., Liu, H., Shi, Y., & Chang, H. Y. (2010). The histone demethylase UTX enables RB-dependent cell fate control. Genes & Development, 24(4), 327–332.

    Article  Google Scholar 

  181. Tsai, M. C., Wang, J. K., & Chang, H. Y. (2010). Tumor suppression by the histone demethylase UTX. Cell Cycle, 9(11), 2043–2044.

    Article  CAS  PubMed  Google Scholar 

  182. Terashima, M., Ishimura, A., Yoshida, M., Suzuki, Y., Sugano, S., & Suzuki, T. (2010). The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase. Biochemical and Biophysical Research Communications, 399(2), 238–244.

    Article  CAS  PubMed  Google Scholar 

  183. Agger, K., Cloos, P. A., Rudkjaer, L., Williams, K., Andersen, G., Christensen, J., & Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes & Development, 23(10), 1171–1176.

    Article  CAS  Google Scholar 

  184. Barradas, M., Anderton, E., Acosta, J. C., Li, S., Banito, A., Rodriguez-Niedenfuhr, M., Maertens, G., Banck, M., Zhou, M. M., Walsh, M. J., et al. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes & Development, 23(10), 1177–1182.

    Article  CAS  Google Scholar 

  185. Martinelli, P., Bonetti, P., Sironi, C., Pruneri, G., Fumagalli, C., Raviele, P. R., Volorio, S., Pileri, S., Chiarle, R., McDuff, F. K., et al. (2011). The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway. Blood, 117(24), 6617–6626.

    Article  PubMed  Google Scholar 

  186. Lin, T. Y., Cheng, Y. C., Yang, H. C., Lin, W. C., Wang, C. C., Lai, P. L., & Shieh, S. Y. (2012). Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene, 31(27), 3287–3297.

    Article  CAS  PubMed  Google Scholar 

  187. Ene, C. I., Edwards, L., Riddick, G., Baysan, M., Woolard, K., Kotliarova, S., Lai, C., Belova, G., Cam, M., Walling, J., et al. (2012). Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS ONE, 7(12), e51407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pereira, F., Barbachano, A., Silva, J., Bonilla, F., Campbell, M. J., Munoz, A., & Larriba, M. J. (2011). KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 20(23), 4655–4665.

    Article  CAS  PubMed  Google Scholar 

  189. Yang, J., Wang, X., Huang, B., Liu, R., Xiong, H., Ye, F., Zeng, C., Fu, X., & Li, L. (2021). An IFN-gamma/STAT1/JMJD3 axis induces ZEB1 expression and promotes aggressiveness in lung adenocarcinoma. Molecular Cancer Research, 19(7), 1234–1246.

    Article  CAS  PubMed  Google Scholar 

  190. Lee, S. H., Kim, O., Kim, H. J., Hwangbo, C., & Lee, J. H. (2021). Epigenetic regulation of TGF-beta-induced EMT by JMJD3/KDM6B histone H3K27 demethylase. Oncogenesis, 10(2), 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tricarico, R., Nicolas, E., Hall, M. J., & Golemis, E. A. (2020). X- and Y-linked chromatin-modifying genes as regulators of sex-specific cancer incidence and prognosis. Clinical Cancer Research, 26(21), 5567–5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ahn, J., Kim, K. H., Park, S., Ahn, Y. H., Kim, H. Y., Yoon, H., Lee, J. H., Bang, D., & Lee, D. H. (2016). Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget, 7(39), 63252–63260.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Laaser, I., Theis, F. J., de Angelis, M. H., Kolb, H. J., & Adamski, J. (2011). Huge splicing frequency in human Y chromosomal UTY gene. OMICS: A Journal of Integrative Biology, 15(3), 141–154.

    Article  CAS  PubMed  Google Scholar 

  194. Dutta, A., Le Magnen, C., Mitrofanova, A., Ouyang, X., Califano, A., & Abate-Shen, C. (2016). Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science, 352(6293), 1576–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ivanov, R., Hol, S., Aarts, T., Hagenbeek, A., Slager, E. H., & Ebeling, S. (2005). UTY-specific TCR-transfer generates potential graft-versus-leukaemia effector T cells. British Journal of Haematology, 129(3), 392–402.

    Article  CAS  PubMed  Google Scholar 

  196. Bund, D., Buhmann, R., Gokmen, F., Zorn, J., Kolb, H. J., & Schmetzer Helga, M. (2012). Minor-histocompatibility-antigen UTY as target for graft-versus-leukemia and graft-versus-haematopoiesis in the canine-model. Scandinavian Journal of Immunology, 77(1), 39–53.

    Article  Google Scholar 

  197. Lee, K. H., Hong, S., Kang, M., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2018). Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. International Journal of Cancer, 143(11), 2849–2861.

    Article  CAS  PubMed  Google Scholar 

  198. Lee, K. H., Kim, B. C., Jeong, S. H., Jeong, C. W., Ku, J. H., Kim, H. H., & Kwak, C. (2020). Histone demethylase kdm7a regulates androgen receptor activity, and its chemical inhibitor TC-E 5002 overcomes cisplatin-resistance in bladder cancer cells. International journal of molecular sciences, 21(16), 5658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Meng, Z., Liu, Y., Wang, J., Fan, H., Fang, H., Li, S., Yuan, L., Liu, C., Peng, Y., Zhao, W., et al. (2020). Histone demethylase KDM7A is required for stem cell maintenance and apoptosis inhibition in breast cancer. Journal of Cellular Physiology, 235(2), 932–943.

    Article  CAS  PubMed  Google Scholar 

  200. Li, W., Yang, X., Shi, C., & Zhou, Z. (2020). Hsa_circ_002178 Promotes the growth and migration of breast cancer cells and maintains cancer stem-like cell properties through regulating miR-1258/KDM7A Axis. Cell Transplantation, 29, 963689720960174.

    Article  PubMed  Google Scholar 

  201. Liu, Q., Borcherding, N., Shao, P., Cao, H., Zhang, W., & Qi, H. H. (2019). Identification of novel TGF-beta regulated genes with pro-migratory roles. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1865(12), 165537.

    Article  CAS  PubMed  Google Scholar 

  202. Bjorkman, M., Ostling, P., Harma, V., Virtanen, J., Mpindi, J. P., Rantala, J., Mirtti, T., Vesterinen, T., Lundin, M., Sankila, A., et al. (2011). Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 31(29), 3444–3456.

    Article  PubMed  Google Scholar 

  203. Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., Calhoun-Davis, T., Li, H., Palapattu, G. S., Pang, S., et al. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Qiu, J., Shi, G., Jia, Y., Li, J., Wu, M., Dong, S., & Wong, J. (2010). The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Research, 20(8), 908–918.

    Article  CAS  PubMed  Google Scholar 

  205. Liu, Q., Pang, J., Wang, L. A., Huang, Z., Xu, J., Yang, X., Xie, Q., Huang, Y., Tang, T., Tong, D., et al. (2021). Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. The Journal of Pathology, 253(1), 106–118.

    Article  CAS  PubMed  Google Scholar 

  206. Tong, D., Liu, Q., Liu, G., Yuan, W., Wang, L., Guo, Y., Lan, W., Zhang, D., Dong, S., Wang, Y., et al. (2016). The HIF/PHF8/AR axis promotes prostate cancer progression. Oncogenesis, 5(12), e283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Maina, P. K., Shao, P., Jia, X., Liu, Q., Umesalma, S., Marin, M., Long, D., Jr., Concepcion-Roman, S., & Qi, H. H. (2017). Histone demethylase PHF8 regulates hypoxia signaling through HIF1alpha and H3K4me3. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1860(9), 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  208. Maina, P. K., Shao, P., Liu, Q., Fazli, L., Tyler, S., Nasir, M., Dong, X., & Qi, H. H. (2016). c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget, 7(46), 75585–75602.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Liu, Q., Borcherding, N. C., Shao, P., Maina, P. K., Zhang, W., & Qi, H. H. (2020). Contribution of synergism between PHF8 and HER2 signalling to breast cancer development and drug resistance. eBioMedicine, 51, 102612.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Shao, P., Liu, Q., Maina, P. K., Cui, J., Bair, T. B., Li, T., Umesalma, S., Zhang, W., & Qi, H. H. (2017). Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Research, 45(4), 1687–1702.

    Article  CAS  PubMed  Google Scholar 

  211. Wang, Q., Ma, S., Song, N., Li, X., Liu, L., Yang, S., Ding, X., Shan, L., Zhou, X., Su, D., et al. (2016). Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. The Journal of Clinical Investigation, 126(6), 2205–2220.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Ye, H., Yang, Q., Qi, S., & Li, H. (2019). PHF8 Plays an oncogene function in hepatocellular carcinoma formation. Oncology Research, 27(5), 613–621.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhou, W., Gong, L., Wu, Q., Xing, C., Wei, B., Chen, T., Zhou, Y., Yin, S., Jiang, B., Xie, H., et al. (2018). PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 215.

    Article  Google Scholar 

  214. Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S., & Panda, C. K. (2008). Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer, 7, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ghosh, A., Ghosh, S., Maiti, G. P., Mukherjee, S., Mukherjee, N., Chakraborty, J., Roy, A., Roychoudhury, S., & Panda, C. K. (2011). Association of FANCC and PTCH1 with the development of early dysplastic lesions of the head and neck. Annals of surgical oncology, 19, 528–538.

    Article  Google Scholar 

  216. Lee, K. H., Park, J. W., Sung, H. S., Choi, Y. J., Kim, W. H., Lee, H. S., Chung, H. J., Shin, H. W., Cho, C. H., Kim, T. Y., et al. (2015). PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene, 34(22), 2897–2909.

    Article  CAS  PubMed  Google Scholar 

  217. Fu, Y., Liu, M., Li, F., Qian, L., Zhang, P., Lv, F., Cheng, W., & Hou, R. (2019). MiR-221 promotes hepatocellular carcinoma cells migration via targeting PHF2. BioMed Research International, 2019, 4371405.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Liu, Y., Chen, T., Guo, M., Li, Y., Zhang, Q., Tan, G., Yu, L., & Tan, Y. (2021). FOXA2-interacting FOXP2 prevents epithelial-mesenchymal transition of breast cancer cells by stimulating E-cadherin and PHF2 transcription. Frontiers in Oncology, 11, 605025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McCann, T. S., Parrish, J. K., Hsieh, J., Sechler, M., Sobral, L. M., Self, C., Jones, K. L., Goodspeed, A., Costello, J. C., & Jedlicka, P. (2020). KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma. Oncotarget, 11(43), 3818–3831.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zhao, Z., Sun, C., Li, F., Han, J., Li, X., & Song, Z. (2015). Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. International Journal of Clinical and Experimental Pathology, 8(9), 10325–10334.

    PubMed  PubMed Central  Google Scholar 

  221. Yang, C. Y., Tsao, C. H., Hsieh, C. C., Lin, C. K., Lin, C. S., Li, Y. H., Chang, W. C., Cheng, J. C., Lin, G. J., Sytwu, H. K., et al. (2020). Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS ONE, 15(7), e0236101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yao, Y., Zhou, W. Y., & He, R. X. (2019). Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-kappaB pathway. Biomedicine & Pharmacotherapy, 109, 1994–2004.

    Article  CAS  Google Scholar 

  223. Hsia, D. A., Tepper, C. G., Pochampalli, M. R., Hsia, E. Y., Izumiya, C., Huerta, S. B., Wright, M. E., Chen, H. W., Kung, H. J., & Izumiya, Y. (2010). KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9671–9676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang, R., Huang, Q., Li, Y., & Song, Y. (2015). JMJD5 is a potential oncogene for colon carcinogenesis. International Journal of Clinical and Experimental Pathology, 8(6), 6482–6489.

    PubMed  PubMed Central  Google Scholar 

  225. Huang, X., Zhang, S., Qi, H., Wang, Z., Chen, H. W., Shao, J., & Shen, J. (2015). JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta, 1853(10 Pt A), 2286–2295.

    Article  CAS  PubMed  Google Scholar 

  226. Wu, J., He, Z., Yang, X. M., Li, K. L., Wang, D. L., & Sun, F. L. (2017). RCCD1 depletion attenuates TGF-beta-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. Cancer Letters, 400, 18–29.

    Article  CAS  PubMed  Google Scholar 

  227. Wang, H. J., Hsieh, Y. J., Cheng, W. C., Lin, C. P., Lin, Y. S., Yang, S. F., Chen, C. C., Izumiya, Y., Yu, J. S., Kung, H. J., et al. (2014). JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 279–284.

    Article  CAS  PubMed  Google Scholar 

  228. Wang, H. J., Pochampalli, M., Wang, L. Y., Zou, J. X., Li, P. S., Hsu, S. C., Wang, B. J., Huang, S. H., Yang, P., Yang, J. C., et al. (2019). KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene, 38(1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  229. Wang, Z., Wang, C., Huang, X., Shen, Y., Shen, J., & Ying, K. (2012). Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochimica et Biophysica Acta, 1824(4), 692–700.

    Article  CAS  PubMed  Google Scholar 

  230. Vangimalla, S. S., Ganesan, M., Kharbanda, K. K., & Osna, N. A. (2017). Bifunctional enzyme JMJD6 contributes to multiple disease pathogenesis: New twist on the old story. Biomolecules, 7(2), 41.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Hong, X., Zang, J., White, J., Wang, C., Pan, C. H., Zhao, R., Murphy, R. C., Dai, S., Henson, P., Kappler, J. W., et al. (2010). Interaction of JMJD6 with single-stranded RNA. Proc Natl Acad Sci U S A, 107(33), 14568–14572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Heim, A., Grimm, C., Muller, U., Haussler, S., Mackeen, M. M., Merl, J., Hauck, S. M., Kessler, B. M., Schofield, C. J., Wolf, A., et al. (2014). Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Research, 42(12), 7833–7850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tong, D. (2021). The role of JMJD6/U2AF65/AR-V7 axis in castration-resistant prostate cancer progression. Cancer Cell International, 21(1), 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Paschalis, A., Welti, J., Neeb, A. J., Yuan, W., Figueiredo, I., Pereira, R., Ferreira, A., Riisnaes, R., Rodrigues, D. N., Jimenez-Vacas, J. M., et al. (2021). JMJD6 is a druggable oxygenase that regulates AR-V7 expression in prostate cancer. Cancer Research, 81(4), 1087–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lee, Y. F., Miller, L. D., Chan, X. B., Black, M. A., Pang, B., Ong, C. W., Salto-Tellez, M., Liu, E. T., & Desai, K. V. (2012). JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Research, 14(3), R85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rahman, S., Sowa, M. E., Ottinger, M., Smith, J. A., Shi, Y., Harper, J. W., & Howley, P. M. (2011). The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Molecular and Cellular Biology, 31(13), 2641–2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ormandy, C. J., Musgrove, E. A., Hui, R., Daly, R. J., & Sutherland, R. L. (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Research and Treatment, 78(3), 323–335.

    Article  CAS  PubMed  Google Scholar 

  238. Song, Y. Q., Yang, G. J., Ma, D. L., Wang, W. H., & Leung, C. H. (2023). The role and prospect of lysine-specific demethylases in cancer chemoresistance. Medicinal Research Reviews, 43(5), 1438–1469.

    Article  CAS  PubMed  Google Scholar 

  239. Wirawan, A., Tajima, K., Takahashi, F., Mitsuishi, Y., Winardi, W., Hidayat, M., Hayakawa, D., Matsumoto, N., Izumi, K., Asao, T., et al. (2022). A novel therapeutic strategy targeting the mesenchymal phenotype of malignant pleural mesothelioma by suppressing LSD1. Molecular Cancer Research, 20(1), 127–138.

    Article  CAS  PubMed  Google Scholar 

  240. Verigos, J., Karakaidos, P., Kordias, D., Papoudou-Bai, A., Evangelou, Z., Harissis, H. V., Klinakis, A., & Magklara, A. (2019). The histone demethylase LSD1/KappaDM1A mediates chemoresistance in breast cancer via regulation of a stem cell program. Cancers (Basel), 11(10), 1585.

    Article  CAS  PubMed  Google Scholar 

  241. Peng, W., Zhang, H., Tan, S., Li, Y., Zhou, Y., Wang, L., Liu, C., Li, Q., Cen, X., Yang, S., et al. (2020). Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Therapeutic Advances in Medical Oncology, 12, 1758835920937428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li, Y., Tao, L., Zuo, Z., Zhou, Y., Qian, X., Lin, Y., Jie, H., Liu, C., Li, Z., Zhang, H., et al. (2019). ZY0511, a novel, potent and selective LSD1 inhibitor, exhibits anticancer activity against solid tumors via the DDIT4/mTOR pathway. Cancer Letters, 454, 179–190.

    Article  CAS  PubMed  Google Scholar 

  243. Augert, A., Eastwood, E., Ibrahim, A. H., Wu, N., Grunblatt, E., Basom, R., Liggitt, D., Eaton, K. D., Martins, R., Poirier, J. T., et al. (2019). Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Science Signaling, 12(567), eaau2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ekstrom, T. L., Pathoulas, N. M., Huehls, A. M., Kanakkanthara, A., & Karnitz, L. M. (2021). VLX600 disrupts homologous recombination and synergizes with PARP inhibitors and cisplatin by inhibiting histone lysine demethylases. Molecular Cancer Therapeutics, 20(9), 1561–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bayo, J., Tran, T. A., Wang, L., Pena-Llopis, S., Das, A. K., & Martinez, E. D. (2018). Jumonji inhibitors overcome radioresistance in cancer through changes in H3K4 methylation at double-strand breaks. Cell Reports, 25(4), 1040–1050.

    Article  CAS  PubMed  Google Scholar 

  246. Macedo-Silva, C., Miranda-Goncalves, V., Lameirinhas, A., Lencart, J., Pereira, A., Lobo, J., Guimaraes, R., Martins, A. T., Henrique, R., Bravo, I., et al. (2020). JmjC-KDMs KDM3A and KDM6B modulate radioresistance under hypoxic conditions in esophageal squamous cell carcinoma. Cell Death & Disease, 11(12), 1068.

    Article  CAS  Google Scholar 

  247. Wu, L. W., Zhou, D. M., Zhang, Z. Y., Zhang, J. K., Zhu, H. J., Lin, N. M., & Zhang, C. (2019). Suppression of LSD1 enhances the cytotoxic and apoptotic effects of regorafenib in hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 512(4), 852–858.

    Article  CAS  PubMed  Google Scholar 

  248. Jostes, S., Nettersheim, D., & Schorle, H. (2019). Epigenetic drugs and their molecular targets in testicular germ cell tumours. Nature Reviews. Urology, 16(4), 245–259.

    Article  PubMed  Google Scholar 

  249. Li, Z., Qin, T., Zhao, X., Zhang, X., Zhao, T., Yang, N., Miao, J., Ma, J., & Zhang, Z. (2021). Discovery of quinazoline derivatives as a novel class of potent and in vivo efficacious LSD1 inhibitors by drug repurposing. European Journal of Medicinal Chemistry, 225, 113778.

    Article  CAS  PubMed  Google Scholar 

  250. Zheng, Y., Ma, Y., Cao, H., Yan, L., Gu, Y., Ren, X., Jiao, X., Wan, S., & Shao, F. (2021). Identification of fenoldopam as a novel LSD1 inhibitor to abrogate the proliferation of renal cell carcinoma using drug repurposing strategy. Bioorganic Chemistry, 108, 104561.

    Article  CAS  PubMed  Google Scholar 

  251. Li, Z. R., Suo, F. Z., Hu, B., Guo, Y. J., Fu, D. J., Yu, B., Zheng, Y. C., & Liu, H. M. (2019). Identification of osimertinib (AZD9291) as a lysine specific demethylase 1 inhibitor. Bioorganic Chemistry, 84, 164–169.

    Article  CAS  PubMed  Google Scholar 

  252. Kleszcz, R., Skalski, M., Krajka-Kuzniak, V., & Paluszczak, J. (2021). The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. European Journal of Pharmaceutical Sciences, 166, 105961.

    Article  CAS  PubMed  Google Scholar 

  253. Milzman, J., Sheng, W., & Levy, D. (2021). Modeling LSD1-Mediated Tumor Stagnation. Bulletin of Mathematical Biology, 83(2), 15.

    Article  CAS  PubMed  Google Scholar 

  254. Soldi, R., Ghosh Halder, T., Weston, A., Thode, T., Drenner, K., Lewis, R., Kaadige, M. R., Srivastava, S., Daniel Ampanattu, S., Rodriguez Del Villar, R., et al. (2020). The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS ONE, 15(7), e0235705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Carter, D. M., Specker, E., Malecki, P. H., Przygodda, J., Dudaniec, K., Weiss, M. S., Heinemann, U., Nazare, M., & Gohlke, U. (2021). Enhanced properties of a benzimidazole benzylpyrazole lysine demethylase inhibitor: Mechanism-of-action, binding site analysis, and activity in cellular models of prostate cancer. Journal of Medicinal Chemistry, 64(19), 14266–14282.

    Article  CAS  PubMed  Google Scholar 

  256. Kanouni, T., Severin, C., Cho, R. W., Yuen, N. Y., Xu, J., Shi, L., Lai, C., Del Rosario, J. R., Stansfield, R. K., Lawton, L. N., et al. (2020). Discovery of CC-90011: A potent and selective reversible inhibitor of lysine specific demethylase 1 (LSD1). Journal of Medicinal Chemistry, 63(23), 14522–14529.

    Article  CAS  PubMed  Google Scholar 

  257. Hollebecque, A., Salvagni, S., Plummer, R., Isambert, N., Niccoli, P., Capdevila, J., Curigliano, G., Moreno, V., Martin-Romano, P., Baudin, E., et al. (2021). Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-Hodgkin lymphoma. Clinical Cancer Research, 27(2), 438–446.

    Article  CAS  PubMed  Google Scholar 

  258. Tayari, M. M., Santos, H. G. D., Kwon, D., Bradley, T. J., Thomassen, A., Chen, C., Dinh, Y., Perez, A., Zelent, A., Morey, L., et al. (2021). Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clinical Cancer Research, 27(7), 1893–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). The LSD1 Inhibitor Iadademstat is active in acute myeloid leukemia. Cancer Discovery, 10(12), OF4.

    Article  Google Scholar 

  260. Kurmasheva, R. T., Erickson, S. W., Han, R., Teicher, B. A., Smith, M. A., Roth, M., Gorlick, R., & Houghton, P. J. (2021). In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatric Blood & Cancer, 68(11), e29304.

    Article  CAS  Google Scholar 

  261. Johnston, G., Ramsey, H. E., Liu, Q., Wang, J., Stengel, K. R., Sampathi, S., Acharya, P., Arrate, M., Stubbs, M. C., Burn, T., et al. (2020). Nascent transcript and single-cell RNA-seq analysis defines the mechanism of action of the LSD1 inhibitor INCB059872 in myeloid leukemia. Gene, 752, 144758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Salamero, O., Montesinos, P., Willekens, C., Perez-Simon, J. A., Pigneux, A., Recher, C., Popat, R., Carpio, C., Molinero, C., Mascaro, C., et al. (2020). First-in-human phase I study of Iadademstat (ORY-1001): A first-in-class lysine-specific histone demethylase 1A inhibitor, in relapsed or refractory acute myeloid leukemia. Journal of Clinical Oncology, 38(36), 4260–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yang, G. J., Wang, W., Mok, S. W. F., Wu, C., Law, B. Y. K., Miao, X. M., Wu, K. J., Zhong, H. J., Wong, C. Y., Wong, V. K. W., et al. (2018). Selective inhibition of lysine-specific demethylase 5A (KDM5A) Using a Rhodium(III) complex for triple-negative breast cancer therapy. Angewandte Chemie (International ed. in English), 57(40), 13091–13095.

    Article  CAS  PubMed  Google Scholar 

  264. Shin, S., & Janknecht, R. (2007). Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 359(3), 742–746.

    Article  CAS  PubMed  Google Scholar 

  265. Kim, T. D., Oh, S., Shin, S., & Janknecht, R. (2012). Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS ONE, 7(4), e34618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yang, G. J., Zhu, M. H., Lu, X. J., Liu, Y. J., Lu, J. F., Leung, C. H., Ma, D. L., & Chen, J. (2021). The emerging role of KDM5A in human cancer. Journal of hematology & oncology, 14(1), 1–18.

    Article  Google Scholar 

  267. Dai, B., Huang, H., Guan, F., Zhu, G. T., Xiao, Z. Y., Mao, B. B., Su, H. Y., & Hu, Z. Q. (2018). Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomedicine & Pharmacotherapy, 99, 72–80.

    Article  CAS  Google Scholar 

  268. Sase, H., Nakanishi, Y., Aida, S., Horiguchi-Takei, K., Akiyama, N., Fujii, T., Sakata, K., Mio, T., Aoki, M., & Ishii, N. (2018). Acquired JHDM1D-BRAF fusion confers resistance to FGFR inhibition in FGFR2-amplified gastric cancer. Molecular Cancer Therapeutics, 17(10), 2217–2225.

    Article  CAS  PubMed  Google Scholar 

  269. Cheng, Y., Wang, Y., Li, J., Chang, I., & Wang, C. Y. (2017). A novel read-through transcript JMJD7-PLA2G4B regulates head and neck squamous cell carcinoma cell proliferation and survival. Oncotarget, 8(2), 1972–1982.

    Article  PubMed  Google Scholar 

  270. Bodmer, D., Schepens, M., Eleveld, M. J., & Schoenmakers, E. F. (2003). Geurts van Kessel A: Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t(2;3)(q35;q21). Genes, Chromosomes & Cancer, 38(2), 107–116.

    Article  CAS  Google Scholar 

  271. Chang, S., Yim, S., & Park, H. (2019). The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: Crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Experimental & Molecular Medicine, 51(6), 1–17.

    Article  Google Scholar 

  272. Rondinelli, B., Schwerer, H., Antonini, E., Gaviraghi, M., Lupi, A., Frenquelli, M., Cittaro, D., Segalla, S., Lemaitre, J. M., & Tonon, G. (2015). H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Research, 43(5), 2560–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Wang, N., Ma, T., & Yu, B. (2023). Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduction and Targeted Therapy, 8(1), 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Petty, W. J., & Paz-Ares, L. (2023). Emerging strategies for the treatment of small cell lung cancer: A review. Jama Oncology, 9(3), 419–429.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Chongqing Science and Technology Bureau (Basic and Frontier Research Project with grant no. cstc2018jcyjAX0645) and the Chongqing Municipal Health Committee (Science and Health Joint Medical Research Project with grant no. 2018QNXM041) by Dr. Dali Tong and National Nature Science Foundation of China (81902302) by Dr. Ying Tang.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Dali Tong designed, wrote, and reviewed the MS. Dr. Ying Tang checked and participated in partial revision of the MS. Dr. Peng Zhong provided the literature reviewing and partial data collection of MS.

Corresponding authors

Correspondence to Dali Tong, Ying Tang or Peng Zhong.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dali Tong, Ying Tang and Peng Zhong are co-corresponding authors.

Dali Tong is Lead Contact.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Tang, Y. & Zhong, P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-023-10160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-023-10160-9

Keywords

Navigation